MTH 301: Group Theory
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1 Preliminaries

1.1 Basic definitions and examples
(i) Definition of a group.

(ii) The order of a group G (denoted by |G|) is the number of elements in
it (or its cardinality).

(iii) Examples of groups:

(8‘) Additive groups: (Zu +)7 (@7 +)7 (Ra +)7 (Ca +)7 and Mn((X)7 for
X =7,Q, R, and C.

(b) Multiplicative groups (Q*,-), (R*,-), (C*,.), and GL(n, X), for
X =Q, R, and C.

(¢) The Dihedral group D,, - the group of symmetries of a regular
n-gon.

(iv) Let G be group and S C G. Then S is a generating set for G (denoted
by G = (S)) if every element in G can be expressed as a finite product
of powers of elements in S.

(v) The order of an element g € G (denoted by o(g)) is the smallest positive
integer m such that ¢ = 1.

(vi) Let G be a group, let g € G with o(g) = n. Then

o(g") "

- ged(k,n)

1.2 The cyclic group

(i) A group G is said to be cyclic, if there exists a g € G such that G = (g).
In other words, G is cyclic, if its generated by a single element.

(ii) Let G = (g) be a cyclic group.
(a) If G is of order n (denoted by C,), then

Cn = {1797927 cee 7gn71}.



(b) If G is of infinite order, then

G =11, 4% ...

(iii) Realizing C,, as the multiplicative group of complex n'* roots unity.
(iv) The group Z,, = {[0],[1],...,[n — 1]} of residue classes modulo n under
+, where

[i] = {nk +i|k € Z}

2rk/n

(v) Using the association [k] <> e , for 0 < k <n—1, we can realize

C,, as Z,,.
(vi) Let G = (g) be a cyclic group.

(a) If H < g, then H is also cyclic.

(b) If G = C,, then it has a unique cyclic subgroup Cy = (g™?) of
order d for divisor d of n.

1.3 The symmetric group S5,

(i) The symmetric group S,, is the group all bijections from a set of size n
onto itself.

(ii) |S| = n!.

(ili) A k-cycle o = (i1 iy ... ix) in S, is a permutation of the form

(iv) A 2-cycle in S, is a called a transposition.

(v) Every permutation ¢ € S, can be expressed as a product of disjoint
cycles.

(vi) Suppose that the cycle decomposition of a permutation o € S, is given
by

0 =0102...0k,,



(vii)

(viii)

ko

where each o; is an my;-cycle. Then Z m; = n, or in other words, the
i=1

decomposition induces a partition of the integer n as follows

n=m;+mgs+...+m,.

Two permutations of S, lie in the same conjugacy class if, and only
if they induce the same partition of the integer n. Consequently, the
cycle decomposition of a permutation is unique.

Every k-cycle (i1is ... i) (for k > 2) is a product of k — 1 transposi-
tions, namely

(i1dg ... i) = (i1 %) (i1 Gp—1) . . . (i1 12)

The order of an element in S, is the least common multiple of the
lengths of the cycles in its unique cycle decomposition.
Every normal subgroup of .S,, is a disjoint union of conjugacy classes.

A o€ S, is called an:

(a) even permutation, if it can be expressed as the product of an even
number of transpositions.

(b) odd permutation, if it can be expressed as the product of an odd
number of transpositions.

Subgroups

Basic definitions and examples

A subset H of a group G is called a subgroup if H forms a group under
the operation in G.

A subgroup H of a group G is said to proper if H # {1} or G.

Let G be a group. Then H < G if and only if for every a,b € H,
ab~' € H.



(iv) Examples of subgroups:

(a
(b
¢) The altematmg group A, = {o € S, |0 is even.}

(e) SL(n,C) = {A € GL(n,C) |det(A) = 1} is a subgroup of GL(n, C).
(f) SL(n, Q) < SL(n,R) < SL(n, C).

)
)
()
(d) The group of complex n'* roots of unity is a subgroup of C*.
)
)
(g) GL(n,Q) < GL(n,R) < GL(n,C).

2.2 Cosets and Lagrange’s Theorem

(i) Let G be a group and H < G. Then the relation ~g on G defined by
Tegy = xy e H
is an equivalence relation.
(ii) Let G be a group and H < G. Then a left coset of H in G is given by
gH = {gh|h € H},
and a right coset of H in G is given by
Hg={hg|h e H}.
(iii) Let G be a group and H < G. Then
Hg={g' € Glg ~u g}.

(iv) Let G be a group and H < G. Then for any g € G, there is a bijective
correspondence between gH and Hg.

(v) Let G be a group and H < G. Then for any g1,92 € G, there is a
bijective correspondence between gy H and goH.

(vi) The sets G/H ={gH|g € G} and H\G = {Hg|g € G}.



(vii) Let G be a group and H < G. Then there is a bijective correspondence
between G/H and H\G.

(viii) The number of distinct left(or right) cosets of subgroup H of G is called
the index of H in G, which is denoted by G : H|. In other words,

|G : H| =|G/H| = |H\G|.
(ix) Lagrange’s Theorem: Let G be a finite group and H < G. Then
[H |G
(x) The Euler totient function ¢(n) = |[{k € Z* |k < n and ged(k,n) =
1}.

(xi) The multiplicative group U, = {[k] € Z, | ged(k,n) = 1} of integers
modulo n.

(xii) [Un| = o(n).

(xiii) Euler’s Theorem: If @ and n are positive integers such that ged(a,n) =
1, then
a®™ =1 (mod n).

xiv) Fermat’s Theorem: If P is a prime number and a is a positive inte er,
g
then
p ( p).

(xv) Let G be a group and H, K < G. Then HK < @G if, and only if
HK = KH.

(xvi) Let G be a group and H, K < G. Then HN K < G.
(xvii) Let G be a group and H, K be finite subgroups of G. Then

_ |HIK]

HE| = .
K = TR



2.3 Normal subgroups

(i) Let G be a group and H < G. Then H is said to be a normal subgroup
of G (denoted by H < G) if gNg~' C N, for all g € G.

(ii) Examples of normal subgroups:

(a) mZ < Z, for all m € Z
(b) A, <48, forn > 3.
(¢) SL(n,C) QGL(n,C), for n > 2.
(d) ¢, <C*, for n > 2.
(iii) The G be a group, and N < G. Then the following statements are
equivalent
(a) N 4G.
(b) gNg=' = N, for all g € G.
(¢c) gN = Ng, for all g € G.
(d) (gN)(hN) = ghN, for all g,h € G.

(iv) Let G be a group and N < G. Then G/N forms a group under the
operation (¢N,hN) — ghN.

(v) Let G be a group, and H < G such that |G/H| = 2. Then H < G.
(vi) Let G be group, H < G, and N < G. Then

(a) NH < G ie. NH is the internal direct product of N and H.
(b)) NNHJH.
(c) HANH.

3 Homomorphisms and isomorphisms

3.1 Homomorphisms

(i) Let G, H be group, and ¢ : G — H be a map. Then ¢ is said to be a
homomorphism if

p(gh) = »(g)e(h),
for all g, h € G.



(ii) Examples of homomorphisms:
(a) The trivial homomophism ¢ : G — H given by ¢(x) = 1, for all
red.

(b) The identity homomorphism i : G — G given by i(g) = g, for all
g€ qG.

(¢) The map ¢ : Z — Z defined by ¢p(z) = nz.
(d) The map ¢, : Z — Z,, defined by ¢, (x) = [z].
e) The determinant map Det : GL(n,C) — C*.
f) The sign map 7 : S, — {+1} defined by 7(¢) = (—1)"”, where if

o is expressed as product of transpositions, n(o) is the number of
transpositions appearing in the product. In other words,

{1, if o € A,

—1, otherwise.

(
(

7(0) =

(iii) Let ¢ : G — H be a homomorphism.

(a) If ¢ is injective, then it is called a monomorphism.

(b) If ¢ is surjective, then it is called an epimorphism.

(iv) Of the examples in (vii) above, (b) and (c) are isomorphisms, while (d)
and (f) are epimorphisms.

(v) Let ¢ : G — H be a homomorphism. Then
(a) (1) =1.
(b) ¢(g7) = @(g)™", forall g € G.

(vi) Let ¢ : G — H be a homomorphism. Then

(a) The set Kerp = {g € G : ¢(g) = 1} is called the kernel of ¢.
(b) The set Imp = {p(g) : g € G} is called the image of .

(vii) Let ¢ : G — H be a homomorphism. Then

(a) Kero <G.
(b) Imyp < H.
(¢) ¢ is a monomorphism if and only if Ker ¢ = {1}.

9



3.2 The Isomorphism Theorems

(i) A homomoprhism ¢ : G — H is called an isomorphism if ¢ is bijective.

(ii) Let G be a group, and N < G. Then the quotient map ¢ : G — G/N
given by ¢(g) = gN is a homomorphism.

(iii) First Isomorphism Theorem: Let G, H be groups, and ¢ : G — H is a
homomorphism. Then

G/Kery = Im .
In particular, if ¢ is onto, then

G/Kerp = H.

(iv) Let G be a group, H < G, and N < G. Then

(a) HONN < H.
(b) H<NH.

(v) Second Isomorphism Theorem: Let G be a group, H < G, and N <G.
Then
H/HNN = NH/N.

(vi) Third Isomorphism Theorem: Let G be group, and H, K <G such that
H < K. Then
(G/H)/(K/H) =2 G/K.
4 Group actions

(i) Let G be a group and A be nonempty say. Then an action of G on A,
written as G ~ A is a map

GxA—A:(ga)—~g-a
satisfying the following conditions

(a) 1-a=a, for all a € a, and

(b) g-(h-a)=(gh)-a, forall g,h € G and a € A.

10



(ii) For a group G, the set S(G) = {f : G — G| f is a bijection} forms a
group under composition.

(iii) Every action G ~ A induces a homomorphism
Vena : G — S(A),
defined by
Y(g) = ¢4, where @ (a) =g-a, forall a € A,

which is called the permutation representation induced (or afforded) by
the action.

(iv) Conversely, given a homomorphism 9 : G — S(A), the map
GxA—=A:(g,a)—1(g)(a)
defines an action of G on A.

(v) A group action G ~ A is said to be faithful if the permutation repre-
sentation Yg~ 4 it affords, is a monomorphism.

(vi) Examples of group actions:

(a) There is a natural faithful action (denoted by G ~ G) of a group
G on itself by left multiplication given by

(g,h) — gh, for all g,h € G.

The permutation representation ¥g~g : G — S(G) afforded by
this action given by

Yana(g) = pg, where p,(h) = gh, for all h € G,

is called the left reqular representation.

(b) A group G also acts on itself by conjugation (denoted by G ~° G),
which is defined in the following manner

(g,h) — ghg™!, for all g,h € G,
and this yields the permutation representation

Vanea(g) = @b, where ©f(h) = ghg™", for all h € G.

11



(c) Let P, be the regular n-gon. Then D,, ~ P, by permuting its
vertices { Py, Py, ..., P,} as follows

U'<P17P27---7Pn):(Pa(1)>P0(2)7"'7Pa(n)>7

and this permutation extends to a faithful action on the entire
polygon F,.

(vii) Consider an action G ~ A. Then

(a) for each a € A, the set G, = {g € G|g-a = a} is called the
stabilizer of a under the action.

(b) or each a € A, the set O, ={g-a|g € G} is called the orbit of a
under the action.

(c¢) Kertpgna is called kernel of the action, and is also denoted by
Ker(G ~ A).

(viii) Consider an action G ~ A. Then

(a) Ker(G ~ A) 4G, and
(b) for each a € A, G, < G.

(ix) Consider an action G ~ A.
(a) Then the relation ~ on A defined by
a ~ b <= there exists some g € GG such that g-a =10

defines an equivalence relation on A.

(b) Moreover, the equivalence classes under ~ are precisely the distinct
orbits O, under the action. Consequently, for any two orbits O,
and Oy, we have that either

Oa:OborOaﬂOb:Q).

(x) An action G ~ A is said to be transitive if there exists some a € A for
which O, = A. This is equivalent to requiring that for an action to be
transitive, O, = A, for all a € A.

12



(xi)

(xii)

(xiii)

(xiv)

4.1

(i)

(iii)

Orbit-Stabilizer Theorem: Consider an action G ~ A, where |A| < oco.
Then for each a € A, we have that

(G Ga] = [Oul.

Consider an action G ~ A, where |G|, |A] < co. Then

1O, | |G|, for each a € A.

Burnside Lemma: Consider an action G ~ A, where |G|, |A| < oo.
Then the number of distinct orbits under the action (denoted by |O(G ~
A)|) is given by

1
O(G ~ A)| = @Z |4,

geG

where A, = Fix,(A) ={a€ A|g-a=a}.

Cauchy Theorem: Let G be a finite group, and let p be a prime number
such that p | |G]. Then G has an element of order p, and consequently,
a cyclic subgroup of order p.

The action G ~ G
For a group G, consider the self-action G ~ G by left-multiplication.

(a) G ~ G is a transitive action,

(b) Ker(G ~ G) =1, and consequently
(©) G % 5(q).

Cayley’s Thorem: Every group G is isomorphic to a subgroup of S(G).
In particular, if |G| = n, then G isomorphic to a subgroup of S,,.

Given a group G and H < G, the self-action G ~ G extends to an
action G ~ G/H, which is defined by (g,¢'H) +— (g¢')H, and this
action has the following properties:

(a) It is a transitive action.

13



(b) Its kernel is the smallest normal subgroup of G containing H,
which is given by

Ker(G ~G/H) = ﬂ gHg™".

geG

(C) GH:Hand OH:G/H

(d) Hence, when |G/H| < oo and |G| < oo, the Orbit-Stabilizer The-
orem yields

(G/H] = |G|/|H],

which is the Lagrange’s Theorem.

4.2 The action G G
(i) For a group G, the set
Z(G) ={g € G|gh = hg, for all h € G}
is called the center of G.
(ii) Let G be a group and S C G.

(a) The set
Ca(S)={g € G|gs = sg, for all s € S}

is called the centralizer of S in G.

(b) The set
Ne(S)={g € G|gSg~" =S}

is called the the normalizer of H in G.

(i) Let G be a group and S € G. Then Cg(S) < G and Ng(S) < G.
Furthermore, when S = {h}, we have that Cs(h) = Ng(h).

(iv) For a group G, consider the self-action G ~¢ G by conjugation.

(a) Since O; = {1}, G ~° G is a non-transitive action.
(b) Ker(G n° G) = Z(G), and hence Z(G) < G.
(c¢) For each h € G, G, = Cg(h).

14



(d) For each h € G, the orbit O, = {ghg™'|g € G} is called the
conjugacy class of h in G (also denoted by Cy).

(v) Let P(G) denote the power set of G. The action G ~° G extends to
an action G ~¢ P(G) defined by (g,S) — ¢Sg~!. This action has the
following properties.

(a) For each S € P(G), we have
Gs={g€G|gSg~" = 5} = Na(9).
(b) For each S € P(G), we have
Os ={99¢"" |9 € G} =Cs,

the conjugacy class of the set S.

(¢) When |G| < oo, we have that |P(G)| < oo, and hence the Orbit-
Stabilizer Theorem, yields

ICs| =[G : Na(S)].

(vi) Class Equation: Let G be a finite group, and let ¢, go, . . ., g, be repre-
sentatives of the distinct classes of G not contained in Z(G). Then

Gl =1Z(G)] + _IG: Calg)
i=1
(vii) Let G be a finite group, and p is the smallest prime such that p | |G|.

Then every index p subgroup of G is normal is G.

4.3 Sylow’s Theorems and simple groups

(i) Let p be a prime number. A group G is said to be a p-group if each
element in GG has order a power of the p.

(ii)) A subgroup H of a group G is a called a p-subgroup if H itself is a
p-group.

(iii) Example: For a prime p, the group Z, is a p-group for every k € N.

15



(iv) A finite group is a p-group if, and only if |G| = p*, for some k € N.
(v) Consider an action G ~ A, where |G| = p™ and |A| < co. Then

Al =[Ag|  (mod p)

(vi) Let H be a p-subgroup of a finite group G. Then
[Ne(H): H =[G : H|] (mod p)
(vii) First Sylow Theorem: Let G be a finite group with |G| = p"m, where
p is a prime number, and m is a positive integer such that p { m. Then

(a) for 1 <14 < n, G contains a subgroup of order p’, and

(b) for 1 < < n, every subgroup of G of order p is a normal subgroup
of a subgroup of G of order p*!.

(viii) If |G| = p"™m, where p is a prime number, and m is a positive integer
such that p { m, then a subgroup of order p™ is called a Sylow p-subgroup
of G.

(ix) If |G| = pgq, where p and ¢ are primes, then G has a Sylow p-subgroup
H of order p and a Sylow g-subgroup K of order ¢, and so G = HK.

(x) Second Sylow Theorem: Any two Sylow p-subgroups of a group G are
conjugate in G.

(xi) If P is a unique Sylow p-subgroup of a group G, then P I G.
(xii) Let P be a Sylow p-subgroup, and @, a p-subgroup of a group G. Then

Ne(P)NQ=PNQ

(xiii) Third Sylow Theorem: Let n, denote the number of Sylow p-subgroups
of a group G. Then for each Sylow p-subgroup P of G, we have

|G : Ne¢(P)] =n,

Moreover,
n,=1 (mod p)
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(xiv) A group G is said to be simple if it has no proper normal subgroups.
(xv) Examples of simple/non-simple groups:

(a) If |G| = p, where p is a prime, then G' has no proper subgroups,
and so G has to be simple.

(b) Let |G| = p*, where p is a prime and k > 1. Then by the First
Sylow Theorem, G has a subgroup H of H of pF~1. Since [G :
H] = p, we have that H < G, and so G is non-simple.

(c) If |G| = pq, where p < q are distinct primes, then G is not simple,
as it has a subgroup of order ¢ that has index p in G.

(xvi) Let G be any group that has non-prime order less than 60. Then G is
non-simple.

(xvii) The group Ajs that has order 60 is smallest simple group of non-prime
order.

5 Semi-direct products and group extensions

5.1 Direct products

(i) Given two groups G and H, consider the cartesian product G x H with
a binary operation given by

(91, hQ)(QQ, hg) = (glgg, hlhg), for all g1, 92 < G and hl, hQ < H.

Under this operation, the set G x H forms a group called the external
direct product (or the direct product) of the groups G and H, and is
denoted simply as G x H.

(ii) The identity element in G x H is (1,1) and the inverse of an element
(9,h) € G x H is given by (¢!, h™1).

(iii) The notion of a direct of two groups can be extended to define the direct
product of n groups G;, 1 < i <n, denoted by

HGi:G1XG2X...XGn.

=1
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(iv)

(vi)

(vii)

(viii)

The groups G and H inject into the G x H, via the natural monomor-
phisms

G—GxH:g—I(g1)
Hes GxH: hes (1,h)

For any two groups G and H, the natural homomorphism
GxH—HXxG: (g9,h)— (h,g)
is an isomorphism, and hence we have that
GxH=Hx(G.

In other words, up to isomorphism, the direct product of two groups is
commutative.

For any three groups GG, H, and K, the natural homomorphism
(GXxH)xK— (GxH)xK :((g,h), k) — (g,(h,k))
is an isomorphism, and hence we have that
Gx(HxK)=(GxH)xK.

In other words, up to isomorphism, the direct product of three groups
is associative.

A direct product ﬁGi of groups is abelian, if and only if, each com-
ponent group Gj i;:zlibehan.
Let m,n > 2 be positive integers. Then
Loy X Loy = Lo,
if and only is ged(m,n) = 1.

(Classification of finitely generated abelian groups: Every finitely gen-
erated abelian group is isomorphic to a group of the form

L' X Ly X Lz X X Ly, (*)

where n and the r; > 1 are positive integers, and the p; are prime
numbers.

18



(x) Let G be a finitely generated abelian group which has a direct product
decomposition of the form (*) above.

(a) The component Z" is the called free part, and the component
szl X ... X szk is called the torsion part of the direct product
decomposition of G.

(b) The integer r is called rank of G.

5.2 Semi-direct products
(i) For a group G, the set
Aut(G) ={¢ : G — G|y is a isomorphism }
forms a group under composition (with identity element id¢) called
the automorphism group of G.
(ii) For a group G, Aut(G) < S(G).

(iii) The set {[k] € Z,,| ged(k,n) = 1} under multiplication modulo n
is called the multiplicative group of units modulo n, and is denoted
by U,.

(iv) The group U, is cyclic if and only if
n=124,p" or 2",

where p is an odd prime.
(v) Examples of automorphism groups:

(a) When G = Z, Aut(G) = Zs, as it comprises only 1 (i.e. idg)
and —1 (i.e. —idg).

(b) For G = Z,, Aut(G) = U, as any such isomorphism has to
map 1 to a generator of G.

(vi) Let G, H be groups, and 9 : G — Aut(H) be a homomorphism.
Consider the binary operation - on the set G x H defined by

(91, 1) - (92, h2) = (9192, v (91)(h2))

Then (G x H,-) forms a group called the semi-direct product of
the groups G and H under %, and is denoted by G x, H.
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(vii) The identity element in G x, H is (1,1) and the inverse of an
element (g,h) € G x H is given by (g7, h™1).

(viii) If ¢ is taken to be the trivial homomorphism (that maps all ele-
ments of G to the identity isomorphism 1 € Aut(H)), then
GxyH=GxH.,
Hence, the semi-direct product of groups is a generalization of the
direct product.

(ix) For a semi-direct product G X, H, the homomorphism ¢ : G —
Aut(H) < S(G) is indeed the permutation representation of an
action G ~ H.

(x) A semi-direct product G x4 H is abelian if and only if both G and
H are abelian, and v is trivial.

(xi) Examples of semi-direct products:
(a) o When G =Z,, and H = Z,, a non-trivial homomorphism
Y G — Aut(H) = U, exists if and only if
ged(m, ¢(n)) > 1.

e Moreover, 1) is completely determined by (1), and so if
(1) = k € Uy, then k has to satisfy

E™ =1 (mod n).

e Hence, Z,, Xy Z, is often abbreviated as Z,, Xy Zj,.

(b) In particular, consider the case when m = 2 in example (a)
above with the homomorphism ¢ determined by ¥ (1) = —1 €

Aut(H). (Note that —1 here denotes the isomoprhism h —s
h=' = —h, for each h € H.)
Representing the dihedral group as before, that is,

D2n - <’I", S> - {1’T’ T2’ T ,’rn_17878’r‘, 872, .. .,Srn_1}7

we have that
iy X _1 Ly = Doy,

via the isomorphism
(i,7) > s'r?.
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5.3 Group Extensions
(i) A sequence of groups G; and homomorphisms ¢; of the form
G365 ... 25a,
is called an ezxact sequence if Ker ;11 = Imp;, for 1 <i <n — 2.

(ii) A short exact sequence is an exact sequence of the form
155 Gy 55 Gy 25 Gy 25 1,
where 1 denotes the trivial group, and g, ¢4 are trivial homomorhisms.

(iii) The exactness of the sequence
155 G55 Gy 25 Gy 25 1,
implies that ¢, is injective and and ¢ is surjective.

(iv) If G, N and @ are group, then G is called an extension of N by @ if
there exists a short exact sequence of the form

l1->N—->G—->Q—1.

(v) Examples of group extensions:

(a) For any group G, and N < G, there is a natural short exact se-
quence given by

15 NG G/IN 1
is a short exact sequence. Hence, G is an extension of N by G/N.
(b) For any two groups G and H, and a semi-direct product G X H,

;0
1%GMHM,GMH—>1

is a short exact sequence. Hence, G x,, H is an extension of G' by
H.

(c) A group G than is an extension of Z,, by Z, is called a metacyclic
group.
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(d) The group Do, is a metacyclic group, which is an extension of Z
by Z,.

(e) Consider the set Qs = {£1,+i,+j, £k} having 8 elements with
an operation - satisfying the following relations

ii=j-j=k-k=—1
ij=k jok=ik-i=j
(1) (-1 = +1
Then (Qs, ) is a group with +1 as its identity element called the

group of quaternions. The group (Jg is a metacyclic group that is
an extension of Z, by Zs.

6 Classification of groups up to order 15

Below is a table describing the abelian and non-abelian groups (up to iso-
morphism) of orders < 15.

Order Abelian groups Non-abelian groups

1 Zq None

2 Zio None

3 Zs None

4 Ly, Ly X Lig None

5 Zs None

6 Zﬁ 53

7 L7 None

8 Lig, Ly X Lo, Ty X Lig X Zig Dy, Qg

9 Ly, 1z X 13 None

10 Zg Dy

11 711 None

12 Lo, Zig X Lo Ay, Dig, Zy X Zs
13 Z3 None

14 Loy Dyy

15 Z15 None
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7 Solvable groups

7.1 Normal and composition series
(i) In a group G, a series of subgroups N;, for 1 <i < k satisfying
1=NodN,d...4dN,1 AN, =G
are said to form a normal series.

(ii) If in a normal series
1=NygIN, ... dN,_1 <N, =G,

the quotient groups N;1/N; are simple for 1 < i < k — 1, then the nor-
mal series is called a composition series. The quotient groups N;i1/N;
are called composition factors.

(iii) Examples of composition series.

(a) The following are composition series’ associated with the group
Dg = (s,1)

1< (s) d (s,
(r) 9 Dy

g (s
1<(r’) <

7’2><]D8

(b) The group S; has a composition series
1<4A;4.5;

(c) Since Aj is a simple group, the group Ss has a composition series
194,455

(d) Every group G of order p*, for p prime and k > 1 admits a com-
position series of the form

l=Hy<H, AH,d...]4H,_ 1 <dH, =G,

where H; is a group of order p* whose existence and normality in
H;., are guaranteed by the Sylow’s Theorems.
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(iv) Jordan-Holder Theorem: Let G be a finite non-trivial group. Then

(a) G has a composition series, and furthermore

(b) the composition factors in the composition series are unique up to
permutation of its composition factors. More precisely, if

1=NgdN, <...<dN,1 AN, =G
and
1=MydM; Q... M, IM, =G

are two composition series for G, then r = s, and there exists a
permutation 7 of {1,2,...,7} such that

Mw(i)+1/Mﬂ(i) = Ni+1/Ni, for 1 S 1 S r— 1.

7.2 Derived series and solvable groups

(i) The subgroup [G,G] = (S) of a group G generated by elements in the
set
S={ghg”'h™"g,h € G}

is called the commutator subgroup or the derived subgroup of G. It is
also denoted by G’ or GV,

(ii) Let G be a group. Then

(a) GV Q@.
(b) G/GW is an abelian group called the abelianization of G.
(c) G is abelain if, and only if GM) = 1.

(iii) For i > 1, the i*" commutator subgroup G of a group G is defined by
G =[GV, G-V with GO = @G.

(iv) Let G be a group. Then for any ¢ > 0,
(a) GO+ <9 G, and hence G has a chain of normal subgroups
LG9 a agW a6 =G

Y

and furthermore,
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(b) GO /G,

(v) A group G is said to be solvable if it has a normal series

1=NodN;4... AN, AN, =G

such that N;,1/N; is abelian, for 1 <1i <k — 1.

(vi) Examples of solvable/non-solvable groups.

(a)

The group S35 is solvable, as it has a normal series
1 Sl AS Sl 537

where Ag = Z3 and Sg/Ag = ZQ.

The Jordan-Holder Theorem asserts that S; has a composition
series given by
1<9A545;5

that is unique up to permutation of its composition factors, and
these factors are isomorphic to As and Z,. Since As is a non-
abelian simple group and [S5 : As] = 2, S5 is not solvable.

Abelian groups are solvable, as all of their subgroups are normal
and all quotient groups formed using these subgroups will also be
abelian.

A group G of order p*, for p prime and k¥ > 1 admits a normal
series of the form

l=Hy<H JdH,d...]4H,_ 1 <dH, =G,

where H; is a group of order p’ whose existence and normality in
H;,y are guaranteed by the Sylow’s Theorems. Since H;,/H; =
Z,, G is solvable.

(vii) Every subgroup of a solvable group is solvable.

(viii) A group G is solvable if, and only if there exists N <G such that both
N and G/N are solvable.

(ix) Let G be a finite group.
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(a) (Philip Hall) G is solvable if, and only if for every divisor d of n
such that ged(d,n/d) = 1, G has a subgroup of order d.

(b) (Burnside) If |G| = p®¢®, where p and ¢ are primes, then G is
solvable.

(c) (Feit-Thompson Theorem) If G is of odd order, then it is solvable.

(d) (Feit-Thompson) If G is simple, then G = Z,, for some prime
number p.

(e) (Thompson) If for for every pair of elements z,y € G, (z,y) is a
solvable group, then G is solvable.

(x) A group G is solvable if, and only if there exists and integer k& > 0 such
that G = 1.

(xi) For a solvable group G, smallest integer k& > 0 such that G*) = 1 is
called the derived length or the solvable length of G.

(xii) Properties of the derived length.

(a) A group G has derived length 0 if, and only if G is trivial.
(b) A group G has derived length 1 if, and only if G is abelian.

(¢) A group has derived length at most two if and only it has an
abelian normal subgroup such that the quotient group is also an
abelian group.
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