MTH 301: Group Theory Semester 1, 2016-17

Contents

1 Preliminaries 3
1.1 Basic definitions and examples 3
1.2 The cyclic group 3
1.3 The symmetric group S_{n} 4
2 Subgroups 5
2.1 Basic definitions and examples 5
2.2 Cosets and Lagrange's Theorem 6
2.3 Normal subgroups 8
3 Homomorphisms and isomorphisms 8
3.1 Homomorphisms 8
3.2 The Isomorphism Theorems 10
4 Group actions 10
4.1 The action $G \curvearrowright G$ 13
4.2 The action $G \curvearrowright^{c} G$ 14
4.3 Sylow's Theorems and simple groups 15
5 Semi-direct products and group extensions 17
5.1 Direct products 17
5.2 Semi-direct products 19
5.3 Group Extensions 21
6 Classification of groups up to order 15 22

7 Solvable groups 23
7.1 Normal and composition series 23
7.2 Derived series and solvable groups 24

1 Preliminaries

1.1 Basic definitions and examples

(i) Definition of a group.
(ii) The order of a group G (denoted by $|G|$) is the number of elements in it (or its cardinality).
(iii) Examples of groups:
(a) Additive groups: $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+)$, and $M_{n}((X)$, for $X=\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C}.
(b) Multiplicative groups $\left(\mathbb{Q}^{\times}, \cdot\right),\left(\mathbb{R}^{\times}, \cdot\right),\left(\mathbb{C}^{\times}, \cdot\right)$, and $\operatorname{GL}(n, X)$, for $X=\mathbb{Q}, \mathbb{R}$, and \mathbb{C}.
(c) The Dihedral group $D_{2 n}$ - the group of symmetries of a regular n-gon.
(iv) Let G be group and $S \subset G$. Then S is a generating set for G (denoted by $G=\langle S\rangle$) if every element in G can be expressed as a finite product of powers of elements in S.
(v) The order of an element $g \in G$ (denoted by $o(g))$ is the smallest positive integer m such that $g^{m}=1$.
(vi) Let G be a group, let $g \in G$ with $o(g)=n$. Then

$$
o\left(g^{k}\right)=\frac{n}{\operatorname{gcd}(k, n)}
$$

1.2 The cyclic group

(i) A group G is said to be cyclic, if there exists a $g \in G$ such that $G=\langle g\rangle$. In other words, G is cyclic, if its generated by a single element.
(ii) Let $G=\langle g\rangle$ be a cyclic group.
(a) If G is of order n (denoted by C_{n}), then

$$
C_{n}=\left\{1, g, g^{2}, \ldots, g^{n-1}\right\} .
$$

(b) If G is of infinite order, then

$$
G=\left\{1, g^{ \pm 1}, g^{ \pm 2}, \ldots\right\}
$$

(iii) Realizing C_{n} as the multiplicative group of complex $n^{\text {th }}$ roots unity.
(iv) The group $\mathbb{Z}_{n}=\{[0],[1], \ldots,[n-1]\}$ of residue classes modulo n under + , where

$$
[i]=\{n k+i \mid k \in \mathbb{Z}\}
$$

(v) Using the association $[k] \leftrightarrow e^{i 2 \pi k / n}$, for $0 \leq k \leq n-1$, we can realize C_{n} as \mathbb{Z}_{n}.
(vi) Let $G=\langle g\rangle$ be a cyclic group.
(a) If $H \leq g$, then H is also cyclic.
(b) If $G=C_{n}$, then it has a unique cyclic subgroup $C_{d}=\left\langle g^{n / d}\right\rangle$ of order d for divisor d of n.

1.3 The symmetric group S_{n}

(i) The symmetric group S_{n} is the group all bijections from a set of size n onto itself.
(ii) $\left|S_{n}\right|=n$!.
(iii) A k-cycle $\sigma=\left(i_{1} i_{2} \ldots i_{k}\right)$ in S_{n} is a permutation of the form

$$
\left(\begin{array}{ccccc}
i_{1} & i_{2} & \ldots & i_{n-1} & i_{n} \\
i_{2} & i_{3} & \ldots & i_{n} & i_{1}
\end{array}\right)
$$

(iv) A 2-cycle in S_{n} is a called a transposition.
(v) Every permutation $\sigma \in S_{n}$ can be expressed as a product of disjoint cycles.
(vi) Suppose that the cycle decomposition of a permutation $\sigma \in S_{n}$ is given by

$$
\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{k_{\sigma}}
$$

where each σ_{i} is an m_{i}-cycle. Then $\sum_{i=1}^{k_{\sigma}} m_{i}=n$, or in other words, the decomposition induces a partition of the integer n as follows

$$
n=m_{1}+m_{2}+\ldots+m_{k_{\sigma}}
$$

(vii) Two permutations of S_{n} lie in the same conjugacy class if, and only if they induce the same partition of the integer n. Consequently, the cycle decomposition of a permutation is unique.
(viii) Every k-cycle ($i_{1} i_{2} \ldots i_{k}$) (for $k \geq 2$) is a product of $k-1$ transpositions, namely

$$
\left(i_{1} i_{2} \ldots i_{k}\right)=\left(i_{1} i_{k}\right)\left(i_{1} i_{k-1}\right) \ldots\left(i_{1} i_{2}\right)
$$

(ix) The order of an element in S_{n} is the least common multiple of the lengths of the cycles in its unique cycle decomposition.
(x) Every normal subgroup of S_{n} is a disjoint union of conjugacy classes.
(xi) A $\sigma \in S_{n}$ is called an:
(a) even permutation, if it can be expressed as the product of an even number of transpositions.
(b) odd permutation, if it can be expressed as the product of an odd number of transpositions.

2 Subgroups

2.1 Basic definitions and examples

(i) A subset H of a group G is called a subgroup if H forms a group under the operation in G.
(ii) A subgroup H of a group G is said to proper if $H \neq\{1\}$ or G.
(iii) Let G be a group. Then $H \leq G$ if and only if for every $a, b \in H$, $a b^{-1} \in H$.
(iv) Examples of subgroups:
(a) $n \mathbb{Z} \leq \mathbb{Z}$.
(b) $C_{n} \leq D_{2 n} \leq S_{n}$.
(c) The alternating group $A_{n}=\left\{\sigma \in S_{n} \mid \sigma\right.$ is even. $\}$
(d) The group of complex $n^{\text {th }}$ roots of unity is a subgroup of \mathbb{C}^{\times}.
(e) $\mathrm{SL}(n, \mathbb{C})=\{A \in \mathrm{GL}(n, \mathbb{C}) \mid \operatorname{det}(A)=1\}$ is a subgroup of $\mathrm{GL}(n, \mathbb{C})$.
(f) $\mathrm{SL}(n, \mathbb{Q}) \leq \mathrm{SL}(n, \mathbb{R}) \leq \mathrm{SL}(n, \mathbb{C})$.
(g) $\mathrm{GL}(n, \mathbb{Q}) \leq \operatorname{GL}(n, \mathbb{R}) \leq \operatorname{GL}(n, \mathbb{C})$.

2.2 Cosets and Lagrange's Theorem

(i) Let G be a group and $H \leq G$. Then the relation \sim_{H} on G defined by

$$
x \sim_{H} y \Longleftrightarrow x y^{-1} \in H
$$

is an equivalence relation.
(ii) Let G be a group and $H \leq G$. Then a left coset of H in G is given by

$$
g H=\{g h \mid h \in H\},
$$

and a right coset of H in G is given by

$$
H g=\{h g \mid h \in H\} .
$$

(iii) Let G be a group and $H \leq G$. Then

$$
H g=\left\{g^{\prime} \in G \mid g^{\prime} \sim_{H} g\right\}
$$

(iv) Let G be a group and $H \leq G$. Then for any $g \in G$, there is a bijective correspondence between $g H$ and $H g$.
(v) Let G be a group and $H \leq G$. Then for any $g_{1}, g_{2} \in G$, there is a bijective correspondence between $g_{1} H$ and $g_{2} H$.
(vi) The sets $G / H=\{g H \mid g \in G\}$ and $H \backslash G=\{H g \mid g \in G\}$.
(vii) Let G be a group and $H \leq G$. Then there is a bijective correspondence between G / H and $H \backslash G$.
(viii) The number of distinct left(or right) cosets of subgroup H of G is called the index of H in G, which is denoted by $G: H]$. In other words,

$$
[G: H]=|G / H|=|H \backslash G| .
$$

(ix) Lagrange's Theorem: Let G be a finite group and $H \leq G$. Then $|H|||G|$.
(x) The Euler totient function $\phi(n)=\mid\left\{k \in \mathbb{Z}^{+} \mid k<n\right.$ and $\operatorname{gcd}(k, n)=$ $1\} \mid$.
(xi) The multiplicative group $U_{n}=\left\{[k] \in \mathbb{Z}_{n} \mid \operatorname{gcd}(k, n)=1\right\}$ of integers modulo n.
(xii) $\left|U_{n}\right|=\phi(n)$.
(xiii) Euler's Theorem: If a and n are positive integers such that $\operatorname{gcd}(a, n)=$ 1 , then

$$
a^{\phi(n)} \equiv 1 \quad(\bmod n)
$$

(xiv) Fermat's Theorem: If p is a prime number and a is a positive integer, then

$$
a^{p} \equiv a \quad(\bmod p)
$$

(xv) Let G be a group and $H, K \leq G$. Then $H K \leq G$ if, and only if $H K=K H$.
(xvi) Let G be a group and $H, K \leq G$. Then $H \cap K \leq G$.
(xvii) Let G be a group and H, K be finite subgroups of G. Then

$$
|H K|=\frac{|H||K|}{|H \cap K|}
$$

2.3 Normal subgroups

(i) Let G be a group and $H \leq G$. Then H is said to be a normal subgroup of G (denoted by $H \unlhd G)$ if $g N g^{-1} \subset N$, for all $g \in G$.
(ii) Examples of normal subgroups:
(a) $m \mathbb{Z} \unlhd \mathbb{Z}$, for all $m \in \mathbb{Z}$
(b) $A_{n} \unlhd S_{n}$, for $n \geq 3$.
(c) $\mathrm{SL}(n, \mathbb{C}) \unlhd \mathrm{GL}(n, \mathbb{C})$, for $n \geq 2$.
(d) $C_{n} \unlhd \mathbb{C}^{\times}$, for $n \geq 2$.
(iii) The G be a group, and $N \leq G$. Then the following statements are equivalent
(a) $N \unlhd G$.
(b) $g N g^{-1}=N$, for all $g \in G$.
(c) $g N=N g$, for all $g \in G$.
(d) $(g N)(h N)=g h N$, for all $g, h \in G$.
(iv) Let G be a group and $N \unlhd G$. Then G / N forms a group under the operation $(g N, h N) \mapsto g h N$.
(v) Let G be a group, and $H \leq G$ such that $|G / H|=2$. Then $H \unlhd G$.
(vi) Let G be group, $H \leq G$, and $N \unlhd G$. Then
(a) $N H \leq G$ i.e. $N H$ is the internal direct product of N and H.
(b) $N \cap H \unlhd H$.
(c) $H \unlhd N H$.

3 Homomorphisms and isomorphisms

3.1 Homomorphisms

(i) Let G, H be group, and $\varphi: G \rightarrow H$ be a map. Then φ is said to be a homomorphism if

$$
\varphi(g h)=\varphi(g) \varphi(h)
$$

for all $g, h \in G$.
(ii) Examples of homomorphisms:
(a) The trivial homomophism $\varphi: G \rightarrow H$ given by $\varphi(x)=1$, for all $x \in G$.
(b) The identity homomorphism $i: G \rightarrow G$ given by $i(g)=g$, for all $g \in G$.
(c) The map $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $\varphi(x)=n x$.
(d) The map $\varphi_{n}: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ defined by $\varphi_{n}(x)=[x]$.
(e) The determinant map Det: $\mathrm{GL}(n, \mathbb{C}) \rightarrow \mathbb{C}^{\times}$.
(f) The sign map $\tau: S_{n} \rightarrow\{ \pm 1\}$ defined by $\tau(\sigma)=(-1)^{n(\sigma)}$, where if σ is expressed as product of transpositions, $n(\sigma)$ is the number of transpositions appearing in the product. In other words,

$$
\tau(\sigma)= \begin{cases}1, & \text { if } \sigma \in A_{n} \\ -1, & \text { otherwise }\end{cases}
$$

(iii) Let $\varphi: G \rightarrow H$ be a homomorphism.
(a) If φ is injective, then it is called a monomorphism.
(b) If φ is surjective, then it is called an epimorphism.
(iv) Of the examples in (vii) above, (b) and (c) are isomorphisms, while (d) and (f) are epimorphisms.
(v) Let $\varphi: G \rightarrow H$ be a homomorphism. Then
(a) $\varphi(1)=1$.
(b) $\varphi\left(g^{-1}\right)=\varphi(g)^{-1}$, for all $g \in G$.
(vi) Let $\varphi: G \rightarrow H$ be a homomorphism. Then
(a) The set $\operatorname{Ker} \varphi=\{g \in G: \varphi(g)=1\}$ is called the kernel of φ.
(b) The set $\operatorname{Im} \varphi=\{\varphi(g): g \in G\}$ is called the image of φ.
(vii) Let $\varphi: G \rightarrow H$ be a homomorphism. Then
(a) $\operatorname{Ker} \varphi \unlhd G$.
(b) $\operatorname{Im} \varphi \leq H$.
(c) φ is a monomorphism if and only if $\operatorname{Ker} \varphi=\{1\}$.

3.2 The Isomorphism Theorems

(i) A homomoprhism $\varphi: G \rightarrow H$ is called an isomorphism if φ is bijective.
(ii) Let G be a group, and $N \unlhd G$. Then the quotient map $q: G \rightarrow G / N$ given by $q(g)=g N$ is a homomorphism.
(iii) First Isomorphism Theorem: Let G, H be groups, and $\varphi: G \rightarrow H$ is a homomorphism. Then

$$
G / \operatorname{Ker} \varphi \cong \operatorname{Im} \varphi
$$

In particular, if φ is onto, then

$$
G / \operatorname{Ker} \varphi \cong H .
$$

(iv) Let G be a group, $H \leq G$, and $N \unlhd G$. Then
(a) $H \cap N \unlhd H$.
(b) $H \unlhd N H$.
(v) Second Isomorphism Theorem: Let G be a group, $H \leq G$, and $N \unlhd G$. Then

$$
H / H \cap N \cong N H / N
$$

(vi) Third Isomorphism Theorem: Let G be group, and $H, K \unlhd G$ such that $H \leq K$. Then

$$
(G / H) /(K / H) \cong G / K
$$

4 Group actions

(i) Let G be a group and A be nonempty say. Then an action of G on A, written as $G \curvearrowright A$ is a map

$$
G \times A \rightarrow A:(g, a) \mapsto g \cdot a
$$

satisfying the following conditions
(a) $1 \cdot a=a$, for all $a \in a$, and
(b) $g \cdot(h \cdot a)=(g h) \cdot a$, for all $g, h \in G$ and $a \in A$.
(ii) For a group G, the set $S(G)=\{f: G \rightarrow G \mid f$ is a bijection $\}$ forms a group under composition.
(iii) Every action $G \curvearrowright A$ induces a homomorphism

$$
\psi_{G \curvearrowright A}: G \rightarrow S(A),
$$

defined by

$$
\psi(g)=\varphi_{g}, \text { where } \varphi_{g}(a)=g \cdot a, \text { for all } a \in A
$$

which is called the permutation representation induced (or afforded) by the action.
(iv) Conversely, given a homomorphism $\psi: G \rightarrow S(A)$, the map

$$
G \times A \rightarrow A:(g, a) \mapsto \psi(g)(a)
$$

defines an action of G on A.
(v) A group action $G \curvearrowright A$ is said to be faithful if the permutation representation $\psi_{G \curvearrowright A}$ it affords, is a monomorphism.
(vi) Examples of group actions:
(a) There is a natural faithful action (denoted by $G \curvearrowright G$) of a group G on itself by left multiplication given by

$$
(g, h) \mapsto g h, \text { for all } g, h \in G
$$

The permutation representation $\psi_{G \curvearrowright G}: G \rightarrow S(G)$ afforded by this action given by

$$
\psi_{G \curvearrowright G}(g)=\varphi_{g}, \text { where } \varphi_{g}(h)=g h, \text { for all } h \in G,
$$

is called the left regular representation.
(b) A group G also acts on itself by conjugation (denoted by $G \curvearrowright^{c} G$), which is defined in the following manner

$$
(g, h) \mapsto g h g^{-1}, \text { for all } g, h \in G
$$

and this yields the permutation representation

$$
\psi_{G \curvearrowright{ }^{c} G}(g)=\varphi_{g}^{c}, \text { where } \varphi_{g}^{c}(h)=g h g^{-1}, \text { for all } h \in G .
$$

(c) Let P_{n} be the regular n-gon. Then $D_{2 n} \curvearrowright P_{n}$ by permuting its vertices $\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ as follows

$$
\sigma \cdot\left(P_{1}, P_{2}, \ldots, P_{n}\right)=\left(P_{\sigma(1)}, P_{\sigma(2)}, \ldots, P_{\sigma(n)}\right),
$$

and this permutation extends to a faithful action on the entire polygon P_{n}.
(vii) Consider an action $G \curvearrowright A$. Then
(a) for each $a \in A$, the set $G_{a}=\{g \in G \mid g \cdot a=a\}$ is called the stabilizer of a under the action.
(b) or each $a \in A$, the set $\mathcal{O}_{a}=\{g \cdot a \mid g \in G\}$ is called the orbit of a under the action.
(c) Ker $\psi_{G \curvearrowright A}$ is called kernel of the action, and is also denoted by $\operatorname{Ker}(G \curvearrowright A)$.
(viii) Consider an action $G \curvearrowright A$. Then
(a) $\operatorname{Ker}(G \curvearrowright A) \unlhd G$, and
(b) for each $a \in A, G_{a} \leq G$.
(ix) Consider an action $G \curvearrowright A$.
(a) Then the relation \sim on A defined by

$$
a \sim b \Longleftrightarrow \text { there exists some } g \in G \text { such that } g \cdot a=b
$$

defines an equivalence relation on A.
(b) Moreover, the equivalence classes under \sim are precisely the distinct orbits \mathcal{O}_{a} under the action. Consequently, for any two orbits \mathcal{O}_{a} and \mathcal{O}_{b}, we have that either

$$
\mathcal{O}_{a}=\mathcal{O}_{b} \text { or } \mathcal{O}_{a} \cap \mathcal{O}_{b}=\emptyset
$$

(x) An action $G \curvearrowright A$ is said to be transitive if there exists some $a \in A$ for which $\mathcal{O}_{a}=A$. This is equivalent to requiring that for an action to be transitive, $\mathcal{O}_{a}=A$, for all $a \in A$.
(xi) Orbit-Stabilizer Theorem: Consider an action $G \curvearrowright A$, where $|A|<\infty$. Then for each $a \in A$, we have that

$$
\left[G: G_{a}\right]=\left|\mathcal{O}_{a}\right| .
$$

(xii) Consider an action $G \curvearrowright A$, where $|G|,|A|<\infty$. Then

$$
\left|\mathcal{O}_{a}\right|||G|, \text { for each } a \in A
$$

(xiii) Burnside Lemma: Consider an action $G \curvearrowright A$, where $|G|,|A|<\infty$. Then the number of distinct orbits under the action (denoted by $\mid \mathcal{O}(G \curvearrowright$ $A) \mid$) is given by

$$
|\mathcal{O}(G \curvearrowright A)|=\frac{1}{|G|} \sum_{g \in G}\left|A_{g}\right|
$$

where $A_{g}=\operatorname{Fix}_{g}(A)=\{a \in A \mid g \cdot a=a\}$.
(xiv) Cauchy Theorem: Let G be a finite group, and let p be a prime number such that $p||G|$. Then G has an element of order p, and consequently, a cyclic subgroup of order p.

4.1 The action $G \curvearrowright G$

(i) For a group G, consider the self-action $G \curvearrowright G$ by left-multiplication.
(a) $G \curvearrowright G$ is a transitive action,
(b) $\operatorname{Ker}(G \curvearrowright G)=1$, and consequently
(c) $G \xrightarrow{\psi_{G \curvearrowright G}} S(G)$.
(ii) Cayley's Thorem: Every group G is isomorphic to a subgroup of $S(G)$. In particular, if $|G|=n$, then G isomorphic to a subgroup of S_{n}.
(iii) Given a group G and $H \leq G$, the self-action $G \curvearrowright G$ extends to an action $G \curvearrowright G / H$, which is defined by $\left(g, g^{\prime} H\right) \mapsto\left(g g^{\prime}\right) H$, and this action has the following properties:
(a) It is a transitive action.
(b) Its kernel is the smallest normal subgroup of G containing H, which is given by

$$
\operatorname{Ker}(G \curvearrowright G / H)=\bigcap_{g \in G} g H g^{-1}
$$

(c) $G_{H}=H$ and $\mathcal{O}_{H}=G / H$.
(d) Hence, when $|G / H|<\infty$ and $|G|<\infty$, the Orbit-Stabilizer Theorem yields

$$
[G / H]=|G| /|H|,
$$

which is the Lagrange's Theorem.

4.2 The action $G \curvearrowright^{c} G$

(i) For a group G, the set

$$
Z(G)=\{g \in G \mid g h=h g, \text { for all } h \in G\}
$$ is called the center of G.

(ii) Let G be a group and $S \subseteq G$.
(a) The set

$$
C_{G}(S)=\{g \in G \mid g s=s g, \text { for all } s \in S\}
$$

is called the centralizer of S in G.
(b) The set

$$
N_{G}(S)=\left\{g \in G \mid g S g^{-1}=S\right\}
$$

is called the the normalizer of H in G.
(iii) Let G be a group and $S \subseteq G$. Then $C_{G}(S) \leq G$ and $N_{G}(S) \leq G$. Furthermore, when $S=\{h\}$, we have that $C_{G}(h)=N_{G}(h)$.
(iv) For a group G, consider the self-action $G \curvearrowright^{c} G$ by conjugation.
(a) Since $\mathcal{O}_{1}=\{1\}, G \curvearrowright^{c} G$ is a non-transitive action.
(b) $\operatorname{Ker}\left(G \curvearrowright^{c} G\right)=Z(G)$, and hence $Z(G) \unlhd G$.
(c) For each $h \in G, G_{h}=C_{G}(h)$.
(d) For each $h \in G$, the orbit $\mathcal{O}_{h}=\left\{g h g^{-1} \mid g \in G\right\}$ is called the conjugacy class of h in G (also denoted by \mathcal{C}_{h}).
(v) Let $P(G)$ denote the power set of G. The action $G \curvearrowright^{c} G$ extends to an action $G \curvearrowright^{c} P(G)$ defined by $(g, S) \mapsto g S g^{-1}$. This action has the following properties.
(a) For each $S \in P(G)$, we have

$$
G_{S}=\left\{g \in G \mid g S g^{-1}=S\right\}=N_{G}(S) .
$$

(b) For each $S \in P(G)$, we have

$$
\mathcal{O}_{S}=\left\{g S g^{-1} \mid g \in G\right\}=\mathcal{C}_{S}
$$

the conjugacy class of the set S.
(c) When $|G|<\infty$, we have that $|P(G)|<\infty$, and hence the OrbitStabilizer Theorem, yields

$$
\left|\mathcal{C}_{S}\right|=\left[G: N_{G}(S)\right] .
$$

(vi) Class Equation: Let G be a finite group, and let $g_{1}, g_{2}, \ldots, g_{r}$ be representatives of the distinct classes of G not contained in $Z(G)$. Then

$$
|G|=|Z(G)|+\sum_{i=1}^{r}\left[G: C_{G}\left(g_{i}\right)\right]
$$

(vii) Let G be a finite group, and p is the smallest prime such that $p||G|$. Then every index p subgroup of G is normal is G.

4.3 Sylow's Theorems and simple groups

(i) Let p be a prime number. A group G is said to be a p-group if each element in G has order a power of the p.
(ii) A subgroup H of a group G is a called a p-subgroup if H itself is a p-group.
(iii) Example: For a prime p, the group $\mathbb{Z}_{p^{k}}$ is a p-group for every $k \in \mathbb{N}$.
(iv) A finite group is a p-group if, and only if $|G|=p^{k}$, for some $k \in \mathbb{N}$.
(v) Consider an action $G \curvearrowright A$, where $|G|=p^{n}$ and $|A|<\infty$. Then

$$
|A| \equiv\left|A_{G}\right| \quad(\bmod p)
$$

(vi) Let H be a p-subgroup of a finite group G. Then

$$
\left[N_{G}(H): H\right] \equiv[G: H] \quad(\bmod p)
$$

(vii) First Sylow Theorem: Let G be a finite group with $|G|=p^{n} m$, where p is a prime number, and m is a positive integer such that $p \nmid m$. Then
(a) for $1 \leq i \leq n, G$ contains a subgroup of order p^{i}, and
(b) for $1 \leq i<n$, every subgroup of G of order p^{i} is a normal subgroup of a subgroup of G of order p^{i+1}.
(viii) If $|G|=p^{n} m$, where p is a prime number, and m is a positive integer such that $p \nmid m$, then a subgroup of order p^{n} is called a Sylow p-subgroup of G.
(ix) If $|G|=p q$, where p and q are primes, then G has a Sylow p-subgroup H of order p and a Sylow q-subgroup K of order q, and so $G=H K$.
(x) Second Sylow Theorem: Any two Sylow p-subgroups of a group G are conjugate in G.
(xi) If P is a unique Sylow p-subgroup of a group G, then $P \unlhd G$.
(xii) Let P be a Sylow p-subgroup, and Q, a p-subgroup of a group G. Then

$$
N_{G}(P) \cap Q=P \cap Q
$$

(xiii) Third Sylow Theorem: Let n_{p} denote the number of Sylow p-subgroups of a group G. Then for each Sylow p-subgroup P of G, we have

$$
\left[G: N_{G}(P)\right]=n_{p}
$$

Moreover,

$$
n_{p} \equiv 1 \quad(\bmod p)
$$

(xiv) A group G is said to be simple if it has no proper normal subgroups.
(xv) Examples of simple/non-simple groups:
(a) If $|G|=p$, where p is a prime, then G has no proper subgroups, and so G has to be simple.
(b) Let $|G|=p^{k}$, where p is a prime and $k>1$. Then by the First Sylow Theorem, G has a subgroup H of H of p^{k-1}. Since $[G$: $H]=p$, we have that $H \leq G$, and so G is non-simple.
(c) If $|G|=p q$, where $p<q$ are distinct primes, then G is not simple, as it has a subgroup of order q that has index p in G.
(xvi) Let G be any group that has non-prime order less than 60 . Then G is non-simple.
(xvii) The group A_{5} that has order 60 is smallest simple group of non-prime order.

5 Semi-direct products and group extensions

5.1 Direct products

(i) Given two groups G and H, consider the cartesian product $G \times H$ with a binary operation given by

$$
\left(g_{1}, h_{2}\right)\left(g_{2}, h_{2}\right)=\left(g_{1} g_{2}, h_{1} h_{2}\right), \text { for all } g_{1}, g_{2} \in G \text { and } h_{1}, h_{2} \in H
$$

Under this operation, the set $G \times H$ forms a group called the external direct product (or the direct product) of the groups G and H, and is denoted simply as $G \times H$.
(ii) The identity element in $G \times H$ is $(1,1)$ and the inverse of an element $(g, h) \in G \times H$ is given by $\left(g^{-1}, h^{-1}\right)$.
(iii) The notion of a direct of two groups can be extended to define the direct product of n groups $G_{i}, 1 \leq i \leq n$, denoted by

$$
\prod_{i=1}^{n} G_{i}=G_{1} \times G_{2} \times \ldots \times G_{n}
$$

(iv) The groups G and H inject into the $G \times H$, via the natural monomorphisms

$$
\begin{aligned}
& G \hookrightarrow G \times H: g \mapsto(g, 1) \\
& H \hookrightarrow G \times H: h \mapsto(1, h)
\end{aligned}
$$

(v) For any two groups G and H, the natural homomorphism

$$
G \times H \rightarrow H \times G:(g, h) \mapsto(h, g)
$$

is an isomorphism, and hence we have that

$$
G \times H \cong H \times G .
$$

In other words, up to isomorphism, the direct product of two groups is commutative.
(vi) For any three groups G, H, and K, the natural homomorphism

$$
(G \times H) \times K \rightarrow(G \times H) \times K:((g, h), k) \mapsto(g,(h, k))
$$

is an isomorphism, and hence we have that

$$
G \times(H \times K) \cong(G \times H) \times K .
$$

In other words, up to isomorphism, the direct product of three groups is associative.
(vii) A direct product $\prod_{i=1}^{n} G_{i}$ of groups is abelian, if and only if, each component group G_{i} is abelian.
(viii) Let $m, n \geq 2$ be positive integers. Then

$$
\mathbb{Z}_{m} \times \mathbb{Z}_{n} \cong \mathbb{Z}_{m n}
$$

if and only is $\operatorname{gcd}(m, n)=1$.
(ix) Classification of finitely generated abelian groups: Every finitely generated abelian group is isomorphic to a group of the form

$$
\begin{equation*}
\mathbb{Z}^{r} \times \mathbb{Z}_{p_{1}^{r_{1}}} \times \mathbb{Z}_{p_{2}^{r_{2}}} \times \ldots \times \mathbb{Z}_{p_{k}^{r_{k}}} \tag{*}
\end{equation*}
$$

where n and the $r_{i} \geq 1$ are positive integers, and the p_{i} are prime numbers.
(x) Let G be a finitely generated abelian group which has a direct product decomposition of the form $\left({ }^{*}\right)$ above.
(a) The component \mathbb{Z}^{r} is the called free part, and the component $\mathbb{Z}_{p_{1}^{r_{1}}} \times \ldots \times \mathbb{Z}_{p_{k}^{r_{k}}}$ is called the torsion part of the direct product decomposition of G.
(b) The integer r is called rank of G.

5.2 Semi-direct products

(i) For a group G, the set

$$
\operatorname{Aut}(G)=\{\varphi: G \rightarrow G \mid \varphi \text { is a isomorphism }\}
$$

forms a group under composition (with identity element $i d_{G}$) called the automorphism group of G.
(ii) For a group $G, \operatorname{Aut}(G) \leq S(G)$.
(iii) The set $\left\{[k] \in \mathbb{Z}_{n} \mid \operatorname{gcd}(k, n)=1\right\}$ under multiplication modulo n is called the multiplicative group of units modulo n, and is denoted by U_{n}.
(iv) The group U_{n} is cyclic if and only if

$$
n=1,2,4, p^{k}, \text { or } 2 p^{k},
$$

where p is an odd prime.
(v) Examples of automorphism groups:
(a) When $G=\mathbb{Z}$, $\operatorname{Aut}(G) \cong \mathbb{Z}_{2}$, as it comprises only 1 (i.e. $i d_{G}$) and -1 (i.e. $-i d_{G}$).
(b) For $G=\mathbb{Z}_{n}$, $\operatorname{Aut}(G) \cong U_{n}$, as any such isomorphism has to map 1 to a generator of G.
(vi) Let G, H be groups, and $\psi: G \rightarrow \operatorname{Aut}(H)$ be a homomorphism. Consider the binary operation \cdot on the set $G \times H$ defined by

$$
\left(g_{1}, h_{1}\right) \cdot\left(g_{2}, h_{2}\right)=\left(g_{1} g_{2}, h_{1} \psi\left(g_{1}\right)\left(h_{2}\right)\right)
$$

Then $(G \times H, \cdot)$ forms a group called the semi-direct product of the groups G and H under ψ, and is denoted by $G \ltimes_{\psi} H$.
(vii) The identity element in $G \ltimes_{\psi} H$ is $(1,1)$ and the inverse of an element $(g, h) \in G \times H$ is given by $\left(g^{-1}, h^{-1}\right)$.
(viii) If ψ is taken to be the trivial homomorphism (that maps all elements of G to the identity isomorphism $1 \in \operatorname{Aut}(H)$), then

$$
G \ltimes_{\psi} H=G \times H .
$$

Hence, the semi-direct product of groups is a generalization of the direct product.
(ix) For a semi-direct product $G \ltimes_{\psi} H$, the homomorphism $\psi: G \rightarrow$ Aut $(H) \leq S(G)$ is indeed the permutation representation of an action $G \curvearrowright H$.
(x) A semi-direct product $G \ltimes_{\psi} H$ is abelian if and only if both G and H are abelian, and ψ is trivial.
(xi) Examples of semi-direct products:
(a) • When $G=\mathbb{Z}_{m}$ and $H=\mathbb{Z}_{n}$, a non-trivial homomorphism $\psi: G \rightarrow \operatorname{Aut}(H) \cong U_{n}$ exists if and only if

$$
\operatorname{gcd}(m, \phi(n))>1
$$

- Moreover, ψ is completely determined by $\psi(1)$, and so if $\psi(1)=k \in U_{n}$, then k has to satisfy

$$
k^{m} \equiv 1 \quad(\bmod n)
$$

- Hence, $\mathbb{Z}_{m} \ltimes_{\psi} \mathbb{Z}_{n}$ is often abbreviated as $\mathbb{Z}_{n} \ltimes_{k} \mathbb{Z}_{n}$.
(b) In particular, consider the case when $m=2$ in example (a) above with the homomorphism ψ determined by $\psi(1)=-1 \in$ Aut (H). (Note that -1 here denotes the isomoprhism $h \stackrel{-1}{\longmapsto}$ $h^{-1}=-h$, for each $h \in H$.)
Representing the dihedral group as before, that is,

$$
D_{2 n}=\langle r, s\rangle=\left\{1, r, r^{2}, \ldots, r^{n-1}, s, s r, s r^{2}, \ldots, s r^{n-1}\right\},
$$

we have that

$$
\mathbb{Z}_{2} \ltimes_{-1} \mathbb{Z}_{n} \cong D_{2 n}
$$

via the isomorphism

$$
(i, j) \mapsto s^{i} r^{j}
$$

5.3 Group Extensions

(i) A sequence of groups G_{i} and homomorphisms φ_{i} of the form

$$
G_{0} \xrightarrow{\varphi_{1}} G_{1} \xrightarrow{\varphi_{2}} \ldots \xrightarrow{\varphi_{n-1}} G_{n}
$$

is called an exact sequence if $\operatorname{Ker} \varphi_{i+1}=\operatorname{Im} \varphi_{i}$, for $1 \leq i \leq n-2$.
(ii) A short exact sequence is an exact sequence of the form

$$
1 \xrightarrow{\varphi_{0}} G_{1} \xrightarrow{\varphi_{1}} G_{2} \xrightarrow{\varphi_{2}} G_{3} \xrightarrow{\varphi_{4}} 1,
$$

where 1 denotes the trivial group, and φ_{0}, φ_{4} are trivial homomorhisms.
(iii) The exactness of the sequence

$$
1 \xrightarrow{\varphi_{0}} G_{1} \xrightarrow{\varphi_{1}} G_{2} \xrightarrow{\varphi_{2}} G_{3} \xrightarrow{\varphi_{4}} 1,
$$

implies that φ_{1} is injective and and φ_{2} is surjective.
(iv) If G, N and Q are group, then G is called an extension of N by Q if there exists a short exact sequence of the form

$$
1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1
$$

(v) Examples of group extensions:
(a) For any group G, and $N \unlhd G$, there is a natural short exact sequence given by

$$
1 \rightarrow N \hookrightarrow G \xrightarrow{g \mapsto g N} G / N \rightarrow 1
$$

is a short exact sequence. Hence, G is an extension of N by G / N.
(b) For any two groups G and H, and a semi-direct product $G \ltimes_{\psi} H$,

$$
1 \rightarrow G \xrightarrow{g \mapsto(g, 0)} H \ltimes_{\psi} G \xrightarrow{(g, h) \mapsto h} H \rightarrow 1
$$

is a short exact sequence. Hence, $G \ltimes_{\psi} H$ is an extension of G by H.
(c) A group G than is an extension of \mathbb{Z}_{m} by \mathbb{Z}_{n} is called a metacyclic group.
(d) The group $D_{2 n}$ is a metacyclic group, which is an extension of \mathbb{Z}_{2} by \mathbb{Z}_{n}.
(e) Consider the set $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ having 8 elements with an operation \cdot satisfying the following relations

$$
\begin{gathered}
i \cdot i=j \cdot j=k \cdot k=-1 \\
i \cdot j=k, j \cdot k=i, k \cdot i=j \\
(-1) \cdot(-1)=+1
\end{gathered}
$$

Then $\left(Q_{8}, \cdot\right)$ is a group with +1 as its identity element called the group of quaternions. The group Q_{8} is a metacyclic group that is an extension of \mathbb{Z}_{4} by \mathbb{Z}_{2}.

6 Classification of groups up to order 15

Below is a table describing the abelian and non-abelian groups (up to isomorphism) of orders ≤ 15.

Order	Abelian groups	Non-abelian groups
1	\mathbb{Z}_{1}	None
2	\mathbb{Z}_{2}	None
3	\mathbb{Z}_{3}	None
4	$\mathbb{Z}_{4}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}$	None
5	\mathbb{Z}_{5}	None
6	\mathbb{Z}_{6}	S_{3}
7	\mathbb{Z}_{7}	None
8	$\mathbb{Z}_{8}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$	D_{8}, Q_{8}
9	$\mathbb{Z}_{9}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}$	None
10	\mathbb{Z}_{10}	D_{10}
11	\mathbb{Z}_{11}	None
12	$\mathbb{Z}_{12}, \mathbb{Z}_{6} \times \mathbb{Z}_{2}$	$A_{4}, D_{12}, \mathbb{Z}_{4} \ltimes \mathbb{Z}_{3}$
13	\mathbb{Z}_{13}	None
14	\mathbb{Z}_{14}	D_{14}
15	\mathbb{Z}_{15}	None

7 Solvable groups

7.1 Normal and composition series

(i) In a group G, a series of subgroups N_{i}, for $1 \leq i \leq k$ satisfying

$$
1=N_{0} \unlhd N_{2} \unlhd \ldots \unlhd N_{k-1} \unlhd N_{k}=G
$$

are said to form a normal series.
(ii) If in a normal series

$$
1=N_{0} \unlhd N_{2} \unlhd \ldots \unlhd N_{k-1} \unlhd N_{k}=G
$$

the quotient groups N_{i+1} / N_{i} are simple for $1 \leq i \leq k-1$, then the normal series is called a composition series. The quotient groups N_{i+1} / N_{i} are called composition factors.
(iii) Examples of composition series.
(a) The following are composition series' associated with the group $D_{8}=\langle s, r\rangle$

$$
\begin{gathered}
1 \unlhd\langle s\rangle \unlhd\left\langle s, r^{2}\right\rangle \unlhd D_{8} \\
1 \unlhd\left\langle r^{2}\right\rangle \unlhd\langle r\rangle \unlhd D_{8}
\end{gathered}
$$

(b) The group S_{3} has a composition series

$$
1 \unlhd A_{3} \unlhd S_{3}
$$

(c) Since A_{5} is a simple group, the group S_{5} has a composition series

$$
1 \unlhd A_{5} \unlhd S_{5}
$$

(d) Every group G of order p^{k}, for p prime and $k>1$ admits a composition series of the form

$$
1=H_{0} \unlhd H_{1} \unlhd H_{2} \unlhd \ldots \unlhd H_{k-1} \unlhd H_{k}=G
$$

where H_{i} is a group of order p^{i} whose existence and normality in H_{i+1} are guaranteed by the Sylow's Theorems.
(iv) Jordan-Holder Theorem: Let G be a finite non-trivial group. Then
(a) G has a composition series, and furthermore
(b) the composition factors in the composition series are unique up to permutation of its composition factors. More precisely, if

$$
\begin{gathered}
1=N_{0} \unlhd N_{1} \unlhd \ldots \unlhd N_{r-1} \unlhd N_{r}=G \\
\quad \text { and } \\
1=M_{0} \unlhd M_{1} \unlhd \ldots \unlhd M_{s-1} \unlhd M_{s}=G
\end{gathered}
$$

are two composition series for G, then $r=s$, and there exists a permutation π of $\{1,2, \ldots, r\}$ such that

$$
M_{\pi(i)+1} / M_{\pi(i)} \cong N_{i+1} / N_{i}, \text { for } 1 \leq i \leq r-1
$$

7.2 Derived series and solvable groups

(i) The subgroup $[G, G]=\langle S\rangle$ of a group G generated by elements in the set

$$
S=\left\{g h g^{-1} h^{-1} \mid g, h \in G\right\}
$$

is called the commutator subgroup or the derived subgroup of G. It is also denoted by G^{\prime} or $G^{(1)}$.
(ii) Let G be a group. Then
(a) $G^{(1)} \unlhd G$.
(b) $G / G^{(1)}$ is an abelian group called the abelianization of G.
(c) G is abelain if, and only if $G^{(1)}=1$.
(iii) For $i \geq 1$, the $i^{\text {th }}$ commutator subgroup $G^{(i)}$ of a group G is defined by

$$
G^{(i)}=\left[G^{(i-1)}, G^{(i-1)}\right] \text { with } G^{(0)}=G .
$$

(iv) Let G be a group. Then for any $i \geq 0$,
(a) $G^{(i+1)} \unlhd G^{(i)}$, and hence G has a chain of normal subgroups

$$
\ldots G^{(i+1)} \unlhd G^{(i)} \unlhd \ldots \unlhd G^{(1)} \unlhd G^{(0)}=G
$$

and furthermore,
(b) $G^{(i)} / G^{(i+1)}$.
(v) A group G is said to be solvable if it has a normal series

$$
1=N_{0} \unlhd N_{2} \unlhd \ldots \unlhd N_{k-1} \unlhd N_{k}=G
$$

such that N_{i+1} / N_{i} is abelian, for $1 \leq i \leq k-1$.
(vi) Examples of solvable/non-solvable groups.
(a) The group S_{3} is solvable, as it has a normal series

$$
1 \unlhd A_{3} \unlhd S_{3}
$$

where $A_{3} \cong \mathbb{Z}_{3}$ and $S_{3} / A_{3} \cong \mathbb{Z}_{2}$.
(b) The Jordan-Holder Theorem asserts that S_{5} has a composition series given by

$$
1 \unlhd A_{5} \unlhd S_{5}
$$

that is unique up to permutation of its composition factors, and these factors are isomorphic to A_{5} and \mathbb{Z}_{2}. Since A_{5} is a nonabelian simple group and $\left[S_{5}: A_{5}\right]=2, S_{5}$ is not solvable.
(c) Abelian groups are solvable, as all of their subgroups are normal and all quotient groups formed using these subgroups will also be abelian.
(d) A group G of order p^{k}, for p prime and $k>1$ admits a normal series of the form

$$
1=H_{0} \unlhd H_{1} \unlhd H_{2} \unlhd \ldots \unlhd H_{k-1} \unlhd H_{k}=G,
$$

where H_{i} is a group of order p^{i} whose existence and normality in H_{i+1} are guaranteed by the Sylow's Theorems. Since $H_{i+1} / H_{i} \cong$ \mathbb{Z}_{p}, G is solvable.
(vii) Every subgroup of a solvable group is solvable.
(viii) A group G is solvable if, and only if there exists $N \unlhd G$ such that both N and G / N are solvable.
(ix) Let G be a finite group.
(a) (Philip Hall) G is solvable if, and only if for every divisor d of n such that $\operatorname{gcd}(d, n / d)=1, G$ has a subgroup of order d.
(b) (Burnside) If $|G|=p^{a} q^{b}$, where p and q are primes, then G is solvable.
(c) (Feit-Thompson Theorem) If G is of odd order, then it is solvable.
(d) (Feit-Thompson) If G is simple, then $G \cong \mathbb{Z}_{p}$, for some prime number p.
(e) (Thompson) If for for every pair of elements $x, y \in G,\langle x, y\rangle$ is a solvable group, then G is solvable.
(x) A group G is solvable if, and only if there exists and integer $k \geq 0$ such that $G^{(k)}=1$.
(xi) For a solvable group G, smallest integer $k \geq 0$ such that $G^{(k)}=1$ is called the derived length or the solvable length of G.
(xii) Properties of the derived length.
(a) A group G has derived length 0 if, and only if G is trivial.
(b) A group G has derived length 1 if, and only if G is abelian.
(c) A group has derived length at most two if and only it has an abelian normal subgroup such that the quotient group is also an abelian group.

