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1 Preliminaries

1.1 Basic definitions and examples

(i) Definition of a group.

(ii) The order of a group G (denoted by |G|) is the number of elements in
it (or its cardinality).

(iii) Examples of groups:

(a) Additive groups: (Z,+), (Q,+), (R,+), (C,+), and Mn((X), for
X = Z, Q, R, and C.

(b) Multiplicative groups (Q×, ·), (R×, ·), (C×, ·), and GL(n,X), for
X = Q, R, and C.

(c) The Dihedral group D2n - the group of symmetries of a regular
n-gon.

(iv) Let G be group and S ⊂ G. Then S is a generating set for G (denoted
by G = 〈S〉) if every element in G can be expressed as a finite product
of powers of elements in S.

(v) The order of an element g ∈ G (denoted by o(g)) is the smallest positive
integer m such that gm = 1.

(vi) Let G be a group, let g ∈ G with o(g) = n. Then

o(gk) =
n

gcd(k, n)
.

1.2 The cyclic group

(i) A group G is said to be cyclic, if there exists a g ∈ G such that G = 〈g〉.
In other words, G is cyclic, if its generated by a single element.

(ii) Let G = 〈g〉 be a cyclic group.

(a) If G is of order n (denoted by Cn), then

Cn = {1, g, g2, . . . , gn−1}.
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(b) If G is of infinite order, then

G = {1, g±1, g±2, . . .}.

(iii) Realizing Cn as the multiplicative group of complex nth roots unity.

(iv) The group Zn = {[0], [1], . . . , [n− 1]} of residue classes modulo n under
+, where

[i] = {nk + i | k ∈ Z}

(v) Using the association [k] ↔ ei2πk/n, for 0 ≤ k ≤ n − 1, we can realize
Cn as Zn.

(vi) Let G = 〈g〉 be a cyclic group.

(a) If H ≤ g, then H is also cyclic.

(b) If G = Cn, then it has a unique cyclic subgroup Cd = 〈gn/d〉 of
order d for divisor d of n.

1.3 The symmetric group Sn

(i) The symmetric group Sn is the group all bijections from a set of size n
onto itself.

(ii) |Sn| = n!.

(iii) A k-cycle σ = (i1 i2 . . . ik) in Sn is a permutation of the form(
i1 i2 . . . in−1 in
i2 i3 . . . in i1

)
(iv) A 2-cycle in Sn is a called a transposition.

(v) Every permutation σ ∈ Sn can be expressed as a product of disjoint
cycles.

(vi) Suppose that the cycle decomposition of a permutation σ ∈ Sn is given
by

σ = σ1σ2 . . . σkσ ,
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where each σi is an mi-cycle. Then
kσ∑
i=1

mi = n, or in other words, the

decomposition induces a partition of the integer n as follows

n = m1 +m2 + . . .+mkσ .

(vii) Two permutations of Sn lie in the same conjugacy class if, and only
if they induce the same partition of the integer n. Consequently, the
cycle decomposition of a permutation is unique.

(viii) Every k-cycle (i1 i2 . . . ik) (for k ≥ 2) is a product of k − 1 transposi-
tions, namely

(i1 i2 . . . ik) = (i1 ik)(i1 ik−1) . . . (i1 i2)

(ix) The order of an element in Sn is the least common multiple of the
lengths of the cycles in its unique cycle decomposition.

(x) Every normal subgroup of Sn is a disjoint union of conjugacy classes.

(xi) A σ ∈ Sn is called an:

(a) even permutation, if it can be expressed as the product of an even
number of transpositions.

(b) odd permutation, if it can be expressed as the product of an odd
number of transpositions.

2 Subgroups

2.1 Basic definitions and examples

(i) A subset H of a group G is called a subgroup if H forms a group under
the operation in G.

(ii) A subgroup H of a group G is said to proper if H 6= {1} or G.

(iii) Let G be a group. Then H ≤ G if and only if for every a, b ∈ H,
ab−1 ∈ H.
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(iv) Examples of subgroups:

(a) nZ ≤ Z.

(b) Cn ≤ D2n ≤ Sn.

(c) The alternating group An = {σ ∈ Sn |σ is even.}
(d) The group of complex nth roots of unity is a subgroup of C×.

(e) SL(n,C) = {A ∈ GL(n,C) | det(A) = 1} is a subgroup of GL(n,C).

(f) SL(n,Q) ≤ SL(n,R) ≤ SL(n,C).

(g) GL(n,Q) ≤ GL(n,R) ≤ GL(n,C).

2.2 Cosets and Lagrange’s Theorem

(i) Let G be a group and H ≤ G. Then the relation ∼H on G defined by

x ∼H y ⇐⇒ xy−1 ∈ H

is an equivalence relation.

(ii) Let G be a group and H ≤ G. Then a left coset of H in G is given by

gH = {gh |h ∈ H},

and a right coset of H in G is given by

Hg = {hg |h ∈ H}.

(iii) Let G be a group and H ≤ G. Then

Hg = {g′ ∈ G | g′ ∼H g}.

(iv) Let G be a group and H ≤ G. Then for any g ∈ G, there is a bijective
correspondence between gH and Hg.

(v) Let G be a group and H ≤ G. Then for any g1, g2 ∈ G, there is a
bijective correspondence between g1H and g2H.

(vi) The sets G/H = {gH | g ∈ G} and H\G = {Hg | g ∈ G}.
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(vii) Let G be a group and H ≤ G. Then there is a bijective correspondence
between G/H and H\G.

(viii) The number of distinct left(or right) cosets of subgroup H of G is called
the index of H in G, which is denoted by G : H]. In other words,

[G : H] = |G/H| = |H\G|.

(ix) Lagrange’s Theorem: Let G be a finite group and H ≤ G. Then
|H| | |G|.

(x) The Euler totient function φ(n) = |{k ∈ Z+ | k < n and gcd(k, n) =
1}|.

(xi) The multiplicative group Un = {[k] ∈ Zn | gcd(k, n) = 1} of integers
modulo n.

(xii) |Un| = φ(n).

(xiii) Euler’s Theorem: If a and n are positive integers such that gcd(a, n) =
1, then

aφ(n) ≡ 1 (mod n).

(xiv) Fermat’s Theorem: If p is a prime number and a is a positive integer,
then

ap ≡ a (mod p).

(xv) Let G be a group and H,K ≤ G. Then HK ≤ G if, and only if
HK = KH.

(xvi) Let G be a group and H,K ≤ G. Then H ∩K ≤ G.

(xvii) Let G be a group and H,K be finite subgroups of G. Then

|HK| = |H||K|
|H ∩K|

.
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2.3 Normal subgroups

(i) Let G be a group and H ≤ G. Then H is said to be a normal subgroup
of G (denoted by H EG) if gNg−1 ⊂ N , for all g ∈ G.

(ii) Examples of normal subgroups:

(a) mZE Z, for all m ∈ Z
(b) An E Sn, for n ≥ 3.

(c) SL(n,C) E GL(n,C), for n ≥ 2.

(d) Cn E C×, for n ≥ 2.

(iii) The G be a group, and N ≤ G. Then the following statements are
equivalent

(a) N EG.

(b) gNg−1 = N , for all g ∈ G.

(c) gN = Ng, for all g ∈ G.

(d) (gN)(hN) = ghN , for all g, h ∈ G.

(iv) Let G be a group and N E G. Then G/N forms a group under the
operation (gN, hN) 7→ ghN .

(v) Let G be a group, and H ≤ G such that |G/H| = 2. Then H EG.

(vi) Let G be group, H ≤ G, and N EG. Then

(a) NH ≤ G i.e. NH is the internal direct product of N and H.

(b) N ∩H EH.

(c) H ENH.

3 Homomorphisms and isomorphisms

3.1 Homomorphisms

(i) Let G,H be group, and ϕ : G → H be a map. Then ϕ is said to be a
homomorphism if

ϕ(gh) = ϕ(g)ϕ(h),

for all g, h ∈ G.
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(ii) Examples of homomorphisms:

(a) The trivial homomophism ϕ : G → H given by ϕ(x) = 1, for all
x ∈ G.

(b) The identity homomorphism i : G → G given by i(g) = g, for all
g ∈ G.

(c) The map ϕ : Z→ Z defined by ϕ(x) = nx.

(d) The map ϕn : Z→ Zn defined by ϕn(x) = [x].

(e) The determinant map Det : GL(n,C)→ C×.

(f) The sign map τ : Sn → {±1} defined by τ(σ) = (−1)n(σ), where if
σ is expressed as product of transpositions, n(σ) is the number of
transpositions appearing in the product. In other words,

τ(σ) =

{
1, if σ ∈ An
−1, otherwise.

(iii) Let ϕ : G→ H be a homomorphism.

(a) If ϕ is injective, then it is called a monomorphism.

(b) If ϕ is surjective, then it is called an epimorphism.

(iv) Of the examples in (vii) above, (b) and (c) are isomorphisms, while (d)
and (f) are epimorphisms.

(v) Let ϕ : G→ H be a homomorphism. Then

(a) ϕ(1) = 1.

(b) ϕ(g−1) = ϕ(g)−1, for all g ∈ G.

(vi) Let ϕ : G→ H be a homomorphism. Then

(a) The set Kerϕ = {g ∈ G : ϕ(g) = 1} is called the kernel of ϕ.

(b) The set Imϕ = {ϕ(g) : g ∈ G} is called the image of ϕ.

(vii) Let ϕ : G→ H be a homomorphism. Then

(a) KerϕEG.

(b) Imϕ ≤ H.

(c) ϕ is a monomorphism if and only if Kerϕ = {1}.
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3.2 The Isomorphism Theorems

(i) A homomoprhism ϕ : G→ H is called an isomorphism if ϕ is bijective.

(ii) Let G be a group, and N E G. Then the quotient map q : G → G/N
given by q(g) = gN is a homomorphism.

(iii) First Isomorphism Theorem: Let G,H be groups, and ϕ : G→ H is a
homomorphism. Then

G/Kerϕ ∼= Imϕ.

In particular, if ϕ is onto, then

G/Kerϕ ∼= H.

(iv) Let G be a group, H ≤ G, and N EG. Then

(a) H ∩N EH.

(b) H ENH.

(v) Second Isomorphism Theorem: Let G be a group, H ≤ G, and N EG.
Then

H/H ∩N ∼= NH/N.

(vi) Third Isomorphism Theorem: Let G be group, and H,KEG such that
H ≤ K. Then

(G/H)/(K/H) ∼= G/K.

4 Group actions

(i) Let G be a group and A be nonempty say. Then an action of G on A,
written as Gy A is a map

G× A→ A : (g, a) 7→ g · a

satisfying the following conditions

(a) 1 · a = a, for all a ∈ a, and

(b) g · (h · a) = (gh) · a, for all g, h ∈ G and a ∈ A.
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(ii) For a group G, the set S(G) = {f : G → G | f is a bijection} forms a
group under composition.

(iii) Every action Gy A induces a homomorphism

ψGyA : G→ S(A),

defined by

ψ(g) = ϕg, where ϕg(a) = g · a, for all a ∈ A,

which is called the permutation representation induced (or afforded) by
the action.

(iv) Conversely, given a homomorphism ψ : G→ S(A), the map

G× A→ A : (g, a) 7→ ψ(g)(a)

defines an action of G on A.

(v) A group action G y A is said to be faithful if the permutation repre-
sentation ψGyA it affords, is a monomorphism.

(vi) Examples of group actions:

(a) There is a natural faithful action (denoted by Gy G) of a group
G on itself by left multiplication given by

(g, h) 7→ gh, for all g, h ∈ G.

The permutation representation ψGyG : G → S(G) afforded by
this action given by

ψGyG(g) = ϕg, where ϕg(h) = gh, for all h ∈ G,

is called the left regular representation.

(b) A group G also acts on itself by conjugation (denoted by Gyc G),
which is defined in the following manner

(g, h) 7→ ghg−1, for all g, h ∈ G,

and this yields the permutation representation

ψGycG(g) = ϕcg, where ϕcg(h) = ghg−1, for all h ∈ G.
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(c) Let Pn be the regular n-gon. Then D2n y Pn by permuting its
vertices {P1, P2, . . . , Pn} as follows

σ · (P1, P2, . . . , Pn) = (Pσ(1), Pσ(2), . . . , Pσ(n)),

and this permutation extends to a faithful action on the entire
polygon Pn.

(vii) Consider an action Gy A. Then

(a) for each a ∈ A, the set Ga = {g ∈ G | g · a = a} is called the
stabilizer of a under the action.

(b) or each a ∈ A, the set Oa = {g · a | g ∈ G} is called the orbit of a
under the action.

(c) KerψGyA is called kernel of the action, and is also denoted by
Ker(Gy A).

(viii) Consider an action Gy A. Then

(a) Ker(Gy A) EG, and

(b) for each a ∈ A, Ga ≤ G.

(ix) Consider an action Gy A.

(a) Then the relation ∼ on A defined by

a ∼ b ⇐⇒ there exists some g ∈ G such that g · a = b

defines an equivalence relation on A.

(b) Moreover, the equivalence classes under∼ are precisely the distinct
orbits Oa under the action. Consequently, for any two orbits Oa
and Ob, we have that either

Oa = Ob or Oa ∩ Ob = ∅.

(x) An action Gy A is said to be transitive if there exists some a ∈ A for
which Oa = A. This is equivalent to requiring that for an action to be
transitive, Oa = A, for all a ∈ A.
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(xi) Orbit-Stabilizer Theorem: Consider an action Gy A, where |A| <∞.
Then for each a ∈ A, we have that

[G : Ga] = |Oa|.

(xii) Consider an action Gy A, where |G|, |A| <∞. Then

|Oa| | |G|, for each a ∈ A.

(xiii) Burnside Lemma: Consider an action G y A, where |G|, |A| < ∞.
Then the number of distinct orbits under the action (denoted by |O(Gy
A)|) is given by

|O(Gy A)| = 1

|G|
∑
g∈G

|Ag|,

where Ag = Fixg(A) = {a ∈ A | g · a = a}.

(xiv) Cauchy Theorem: Let G be a finite group, and let p be a prime number
such that p | |G|. Then G has an element of order p, and consequently,
a cyclic subgroup of order p.

4.1 The action Gy G

(i) For a group G, consider the self-action Gy G by left-multiplication.

(a) Gy G is a transitive action,

(b) Ker(Gy G) = 1, and consequently

(c) G
ψGyG
↪−−−→ S(G).

(ii) Cayley’s Thorem: Every group G is isomorphic to a subgroup of S(G).
In particular, if |G| = n, then G isomorphic to a subgroup of Sn.

(iii) Given a group G and H ≤ G, the self-action G y G extends to an
action G y G/H, which is defined by (g, g′H) 7→ (gg′)H, and this
action has the following properties:

(a) It is a transitive action.
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(b) Its kernel is the smallest normal subgroup of G containing H,
which is given by

Ker(Gy G/H) =
⋂
g∈G

gHg−1.

(c) GH = H and OH = G/H.

(d) Hence, when |G/H| <∞ and |G| <∞, the Orbit-Stabilizer The-
orem yields

[G/H] = |G|/|H|,

which is the Lagrange’s Theorem.

4.2 The action Gyc G

(i) For a group G, the set

Z(G) = {g ∈ G | gh = hg, for all h ∈ G}

is called the center of G.

(ii) Let G be a group and S ⊆ G.

(a) The set
CG(S) = {g ∈ G | gs = sg, for all s ∈ S}

is called the centralizer of S in G.

(b) The set
NG(S) = {g ∈ G | gSg−1 = S}

is called the the normalizer of H in G.

(iii) Let G be a group and S ⊆ G. Then CG(S) ≤ G and NG(S) ≤ G.
Furthermore, when S = {h}, we have that CG(h) = NG(h).

(iv) For a group G, consider the self-action Gyc G by conjugation.

(a) Since O1 = {1}, Gyc G is a non-transitive action.

(b) Ker(Gyc G) = Z(G), and hence Z(G) EG.

(c) For each h ∈ G, Gh = CG(h).
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(d) For each h ∈ G, the orbit Oh = {ghg−1 | g ∈ G} is called the
conjugacy class of h in G (also denoted by Ch).

(v) Let P (G) denote the power set of G. The action G yc G extends to
an action G yc P (G) defined by (g, S) 7→ gSg−1. This action has the
following properties.

(a) For each S ∈ P (G), we have

GS = {g ∈ G | gSg−1 = S} = NG(S).

(b) For each S ∈ P (G), we have

OS = {gSg−1 | g ∈ G} = CS,

the conjugacy class of the set S.

(c) When |G| < ∞, we have that |P (G)| < ∞, and hence the Orbit-
Stabilizer Theorem, yields

|CS| = [G : NG(S)].

(vi) Class Equation: Let G be a finite group, and let g1, g2, . . . , gr be repre-
sentatives of the distinct classes of G not contained in Z(G). Then

|G| = |Z(G)|+
r∑
i=1

[G : CG(gi)]

(vii) Let G be a finite group, and p is the smallest prime such that p | |G|.
Then every index p subgroup of G is normal is G.

4.3 Sylow’s Theorems and simple groups

(i) Let p be a prime number. A group G is said to be a p-group if each
element in G has order a power of the p.

(ii) A subgroup H of a group G is a called a p-subgroup if H itself is a
p-group.

(iii) Example: For a prime p, the group Zpk is a p-group for every k ∈ N.
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(iv) A finite group is a p-group if, and only if |G| = pk, for some k ∈ N.

(v) Consider an action Gy A, where |G| = pn and |A| <∞. Then

|A| ≡ |AG| (mod p)

(vi) Let H be a p-subgroup of a finite group G. Then

[NG(H) : H] ≡ [G : H] (mod p)

(vii) First Sylow Theorem: Let G be a finite group with |G| = pnm, where
p is a prime number, and m is a positive integer such that p - m. Then

(a) for 1 ≤ i ≤ n, G contains a subgroup of order pi, and

(b) for 1 ≤ i < n, every subgroup of G of order pi is a normal subgroup
of a subgroup of G of order pi+1.

(viii) If |G| = pnm, where p is a prime number, and m is a positive integer
such that p - m, then a subgroup of order pn is called a Sylow p-subgroup
of G.

(ix) If |G| = pq, where p and q are primes, then G has a Sylow p-subgroup
H of order p and a Sylow q-subgroup K of order q, and so G = HK.

(x) Second Sylow Theorem: Any two Sylow p-subgroups of a group G are
conjugate in G.

(xi) If P is a unique Sylow p-subgroup of a group G, then P EG.

(xii) Let P be a Sylow p-subgroup, and Q, a p-subgroup of a group G. Then

NG(P ) ∩Q = P ∩Q

(xiii) Third Sylow Theorem: Let np denote the number of Sylow p-subgroups
of a group G. Then for each Sylow p-subgroup P of G, we have

[G : NG(P )] = np

Moreover,
np ≡ 1 (mod p)
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(xiv) A group G is said to be simple if it has no proper normal subgroups.

(xv) Examples of simple/non-simple groups:

(a) If |G| = p, where p is a prime, then G has no proper subgroups,
and so G has to be simple.

(b) Let |G| = pk, where p is a prime and k > 1. Then by the First
Sylow Theorem, G has a subgroup H of H of pk−1. Since [G :
H] = p, we have that H ≤ G, and so G is non-simple.

(c) If |G| = pq, where p < q are distinct primes, then G is not simple,
as it has a subgroup of order q that has index p in G.

(xvi) Let G be any group that has non-prime order less than 60. Then G is
non-simple.

(xvii) The group A5 that has order 60 is smallest simple group of non-prime
order.

5 Semi-direct products and group extensions

5.1 Direct products

(i) Given two groups G and H, consider the cartesian product G×H with
a binary operation given by

(g1, h2)(g2, h2) = (g1g2, h1h2), for all g1, g2 ∈ G and h1, h2 ∈ H.

Under this operation, the set G×H forms a group called the external
direct product (or the direct product) of the groups G and H, and is
denoted simply as G×H.

(ii) The identity element in G × H is (1, 1) and the inverse of an element
(g, h) ∈ G×H is given by (g−1, h−1).

(iii) The notion of a direct of two groups can be extended to define the direct
product of n groups Gi, 1 ≤ i ≤ n, denoted by

n∏
i=1

Gi = G1 ×G2 × . . .×Gn.
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(iv) The groups G and H inject into the G×H, via the natural monomor-
phisms

G ↪→ G×H : g 7→ (g, 1)

H ↪→ G×H : h 7→ (1, h)

(v) For any two groups G and H, the natural homomorphism

G×H → H ×G : (g, h) 7→ (h, g)

is an isomorphism, and hence we have that

G×H ∼= H ×G.

In other words, up to isomorphism, the direct product of two groups is
commutative.

(vi) For any three groups G, H, and K, the natural homomorphism

(G×H)×K → (G×H)×K : ((g, h), k) 7→ (g, (h, k))

is an isomorphism, and hence we have that

G× (H ×K) ∼= (G×H)×K.

In other words, up to isomorphism, the direct product of three groups
is associative.

(vii) A direct product
n∏
i=1

Gi of groups is abelian, if and only if, each com-

ponent group Gi is abelian.

(viii) Let m,n ≥ 2 be positive integers. Then

Zm × Zn ∼= Zmn

if and only is gcd(m,n) = 1.

(ix) Classification of finitely generated abelian groups: Every finitely gen-
erated abelian group is isomorphic to a group of the form

Zr × Zpr11 × Zpr22 × . . .× Zprkk , (*)

where n and the ri ≥ 1 are positive integers, and the pi are prime
numbers.
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(x) Let G be a finitely generated abelian group which has a direct product
decomposition of the form (*) above.

(a) The component Zr is the called free part, and the component
Zpr11 × . . . × Zprkk is called the torsion part of the direct product
decomposition of G.

(b) The integer r is called rank of G.

5.2 Semi-direct products

(i) For a group G, the set

Aut(G) = {ϕ : G→ G |ϕ is a isomorphism}

forms a group under composition (with identity element idG) called
the automorphism group of G.

(ii) For a group G, Aut(G) ≤ S(G).

(iii) The set {[k] ∈ Zn | gcd(k, n) = 1} under multiplication modulo n
is called the multiplicative group of units modulo n, and is denoted
by Un.

(iv) The group Un is cyclic if and only if

n = 1, 2, 4, pk, or 2pk,

where p is an odd prime.

(v) Examples of automorphism groups:

(a) When G = Z, Aut(G) ∼= Z2, as it comprises only 1 (i.e. idG)
and −1 (i.e. −idG).

(b) For G = Zn, Aut(G) ∼= Un, as any such isomorphism has to
map 1 to a generator of G.

(vi) Let G,H be groups, and ψ : G → Aut(H) be a homomorphism.
Consider the binary operation · on the set G×H defined by

(g1, h1) · (g2, h2) = (g1g2, h1ψ(g1)(h2))

Then (G × H, ·) forms a group called the semi-direct product of
the groups G and H under ψ, and is denoted by Gnψ H.
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(vii) The identity element in G nψ H is (1, 1) and the inverse of an
element (g, h) ∈ G×H is given by (g−1, h−1).

(viii) If ψ is taken to be the trivial homomorphism (that maps all ele-
ments of G to the identity isomorphism 1 ∈ Aut(H)), then

Gnψ H = G×H.

Hence, the semi-direct product of groups is a generalization of the
direct product.

(ix) For a semi-direct product G nψ H, the homomorphism ψ : G →
Aut(H) ≤ S(G) is indeed the permutation representation of an
action Gy H.

(x) A semi-direct product GnψH is abelian if and only if both G and
H are abelian, and ψ is trivial.

(xi) Examples of semi-direct products:

(a) • When G = Zm and H = Zn, a non-trivial homomorphism
ψ : G→ Aut(H) ∼= Un exists if and only if

gcd(m,φ(n)) > 1.

• Moreover, ψ is completely determined by ψ(1), and so if
ψ(1) = k ∈ Un, then k has to satisfy

km ≡ 1 (mod n).

• Hence, Zm nψ Zn is often abbreviated as Zn nk Zn.
(b) In particular, consider the case when m = 2 in example (a)

above with the homomorphism ψ determined by ψ(1) = −1 ∈
Aut(H). (Note that −1 here denotes the isomoprhism h

−17−→
h−1 = −h, for each h ∈ H.)
Representing the dihedral group as before, that is,

D2n = 〈r, s〉 = {1, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1},

we have that
Z2 n−1 Zn ∼= D2n

via the isomorphism

(i, j) 7→ sirj.
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5.3 Group Extensions

(i) A sequence of groups Gi and homomorphisms ϕi of the form

G0
ϕ1−→ G1

ϕ2−→ . . .
ϕn−1−−−→ Gn

is called an exact sequence if Kerϕi+1 = Imϕi, for 1 ≤ i ≤ n− 2.

(ii) A short exact sequence is an exact sequence of the form

1
ϕ0−→ G1

ϕ1−→ G2
ϕ2−→ G3

ϕ4−→ 1,

where 1 denotes the trivial group, and ϕ0, ϕ4 are trivial homomorhisms.

(iii) The exactness of the sequence

1
ϕ0−→ G1

ϕ1−→ G2
ϕ2−→ G3

ϕ4−→ 1,

implies that ϕ1 is injective and and ϕ2 is surjective.

(iv) If G, N and Q are group, then G is called an extension of N by Q if
there exists a short exact sequence of the form

1→ N → G→ Q→ 1.

(v) Examples of group extensions:

(a) For any group G, and N E G, there is a natural short exact se-
quence given by

1→ N ↪→ G
g 7→gN−−−−→ G/N → 1

is a short exact sequence. Hence, G is an extension of N by G/N .

(b) For any two groups G and H, and a semi-direct product Gnψ H,

1→ G
g 7→(g,0)
↪−−−−→ H nψ G

(g,h)7→h−−−−→ H → 1

is a short exact sequence. Hence, Gnψ H is an extension of G by
H.

(c) A group G than is an extension of Zm by Zn is called a metacyclic
group.
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(d) The group D2n is a metacyclic group, which is an extension of Z2

by Zn.

(e) Consider the set Q8 = {±1,±i,±j,±k} having 8 elements with
an operation · satisfying the following relations

i · i = j · j = k · k = −1

i · j = k, j · k = i, k · i = j

(−1) · (−1) = +1

Then (Q8, ·) is a group with +1 as its identity element called the
group of quaternions. The group Q8 is a metacyclic group that is
an extension of Z4 by Z2.

6 Classification of groups up to order 15

Below is a table describing the abelian and non-abelian groups (up to iso-
morphism) of orders ≤ 15.

Order Abelian groups Non-abelian groups
1 Z1 None
2 Z2 None
3 Z3 None
4 Z4, Z2 × Z2 None
5 Z5 None
6 Z6 S3

7 Z7 None
8 Z8, Z4 × Z2, Z2 × Z2 × Z2 D8, Q8

9 Z9, Z3 × Z3 None
10 Z10 D10

11 Z11 None
12 Z12, Z6 × Z2 A4, D12, Z4 n Z3

13 Z13 None
14 Z14 D14

15 Z15 None
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7 Solvable groups

7.1 Normal and composition series

(i) In a group G, a series of subgroups Ni, for 1 ≤ i ≤ k satisfying

1 = N0 EN2 E . . .ENk−1 ENk = G

are said to form a normal series.

(ii) If in a normal series

1 = N0 EN2 E . . .ENk−1 ENk = G,

the quotient groups Ni+1/Ni are simple for 1 ≤ i ≤ k − 1, then the nor-
mal series is called a composition series. The quotient groups Ni+1/Ni

are called composition factors.

(iii) Examples of composition series.

(a) The following are composition series’ associated with the group
D8 = 〈s, r〉

1 E 〈s〉E 〈s, r2〉ED8

1 E 〈r2〉E 〈r〉ED8

(b) The group S3 has a composition series

1 E A3 E S3

(c) Since A5 is a simple group, the group S5 has a composition series

1 E A5 E S5

(d) Every group G of order pk, for p prime and k > 1 admits a com-
position series of the form

1 = H0 EH1 EH2 E . . .EHk−1 EHk = G,

where Hi is a group of order pi whose existence and normality in
Hi+1 are guaranteed by the Sylow’s Theorems.
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(iv) Jordan-Holder Theorem: Let G be a finite non-trivial group. Then

(a) G has a composition series, and furthermore

(b) the composition factors in the composition series are unique up to
permutation of its composition factors. More precisely, if

1 = N0 EN1 E . . .ENr−1 ENr = G

and

1 = M0 EM1 E . . .EMs−1 EMs = G

are two composition series for G, then r = s, and there exists a
permutation π of {1, 2, . . . , r} such that

Mπ(i)+1/Mπ(i)
∼= Ni+1/Ni, for 1 ≤ i ≤ r − 1.

7.2 Derived series and solvable groups

(i) The subgroup [G,G] = 〈S〉 of a group G generated by elements in the
set

S = {ghg−1h−1 | g, h ∈ G}
is called the commutator subgroup or the derived subgroup of G. It is
also denoted by G′ or G(1).

(ii) Let G be a group. Then

(a) G(1) EG.

(b) G/G(1) is an abelian group called the abelianization of G.

(c) G is abelain if, and only if G(1) = 1.

(iii) For i ≥ 1, the ith commutator subgroup G(i) of a group G is defined by

G(i) = [G(i−1), G(i−1)] with G(0) = G.

(iv) Let G be a group. Then for any i ≥ 0,

(a) G(i+1) EG(i), and hence G has a chain of normal subgroups

. . . G(i+1) EG(i) E . . .EG(1) EG(0) = G,

and furthermore,
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(b) G(i)/G(i+1).

(v) A group G is said to be solvable if it has a normal series

1 = N0 EN2 E . . .ENk−1 ENk = G

such that Ni+1/Ni is abelian, for 1 ≤ i ≤ k − 1.

(vi) Examples of solvable/non-solvable groups.

(a) The group S3 is solvable, as it has a normal series

1 E A3 E S3,

where A3
∼= Z3 and S3/A3

∼= Z2.

(b) The Jordan-Holder Theorem asserts that S5 has a composition
series given by

1 E A5 E S5

that is unique up to permutation of its composition factors, and
these factors are isomorphic to A5 and Z2. Since A5 is a non-
abelian simple group and [S5 : A5] = 2, S5 is not solvable.

(c) Abelian groups are solvable, as all of their subgroups are normal
and all quotient groups formed using these subgroups will also be
abelian.

(d) A group G of order pk, for p prime and k > 1 admits a normal
series of the form

1 = H0 EH1 EH2 E . . .EHk−1 EHk = G,

where Hi is a group of order pi whose existence and normality in
Hi+1 are guaranteed by the Sylow’s Theorems. Since Hi+1/Hi

∼=
Zp, G is solvable.

(vii) Every subgroup of a solvable group is solvable.

(viii) A group G is solvable if, and only if there exists N EG such that both
N and G/N are solvable.

(ix) Let G be a finite group.
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(a) (Philip Hall) G is solvable if, and only if for every divisor d of n
such that gcd(d, n/d) = 1, G has a subgroup of order d.

(b) (Burnside) If |G| = paqb, where p and q are primes, then G is
solvable.

(c) (Feit-Thompson Theorem) If G is of odd order, then it is solvable.

(d) (Feit-Thompson) If G is simple, then G ∼= Zp, for some prime
number p.

(e) (Thompson) If for for every pair of elements x, y ∈ G, 〈x, y〉 is a
solvable group, then G is solvable.

(x) A group G is solvable if, and only if there exists and integer k ≥ 0 such
that G(k) = 1.

(xi) For a solvable group G, smallest integer k ≥ 0 such that G(k) = 1 is
called the derived length or the solvable length of G.

(xii) Properties of the derived length.

(a) A group G has derived length 0 if, and only if G is trivial.

(b) A group G has derived length 1 if, and only if G is abelian.

(c) A group has derived length at most two if and only it has an
abelian normal subgroup such that the quotient group is also an
abelian group.
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