MTH 301: Group Theory Semester 1, 2016-17

Contents

1 Preliminaries					
	1.1	Basic definitions and examples	3		
	1.2	The cyclic group	3		
	1.3	The symmetric group S_n	4		
2	Subgroups				
	2.1	Basic definitions and examples	5		
	2.2	Cosets and Lagrange's Theorem	6		
	2.3	Normal subgroups	8		
3	Hor	nomorphisms and isomorphisms	8		
	3.1	Homomorphisms	8		
	3.2	The Isomorphism Theorems	10		
4	Group actions				
	4.1	The action $G \curvearrowright G$	13		
	4.2	The action $G \curvearrowright^c G$	14		
	4.3	Sylow's Theorems and simple groups	15		
5	Semi-direct products and group extensions				
	5.1	Direct products	17		
	5.2	Semi-direct products	19		
	5.3	Group Extensions	21		
6	Clas	ssification of groups up to order 15	22		

7	Solvable groups			
	7.1	Normal and composition series	23	
	7.2	Derived series and solvable groups	24	

1 Preliminaries

1.1 Basic definitions and examples

- (i) Definition of a group.
- (ii) The order of a group G (denoted by |G|) is the number of elements in it (or its cardinality).
- (iii) Examples of groups:
 - (a) Additive groups: $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, $(\mathbb{C}, +)$, and $M_n((X)$, for $X = \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} .
 - (b) Multiplicative groups $(\mathbb{Q}^{\times}, \cdot)$, $(\mathbb{R}^{\times}, \cdot)$, $(\mathbb{C}^{\times}, \cdot)$, and $\operatorname{GL}(n, X)$, for $X = \mathbb{Q}$, \mathbb{R} , and \mathbb{C} .
 - (c) The Dihedral group D_{2n} the group of symmetries of a regular n-gon.
- (iv) Let G be group and $S \subset G$. Then S is a generating set for G (denoted by $G = \langle S \rangle$) if every element in G can be expressed as a finite product of powers of elements in S.
- (v) The order of an element $g \in G$ (denoted by o(g)) is the smallest positive integer m such that $g^m = 1$.
- (vi) Let G be a group, let $g \in G$ with o(g) = n. Then

$$o(g^k) = \frac{n}{\gcd(k,n)}.$$

1.2 The cyclic group

- (i) A group G is said to be *cyclic*, if there exists a $g \in G$ such that $G = \langle g \rangle$. In other words, G is cyclic, if its generated by a single element.
- (ii) Let $G = \langle g \rangle$ be a cyclic group.
 - (a) If G is of order n (denoted by C_n), then

$$C_n = \{1, g, g^2, \dots, g^{n-1}\}.$$

(b) If G is of infinite order, then

$$G = \{1, g^{\pm 1}, g^{\pm 2}, \ldots\}.$$

- (iii) Realizing C_n as the multiplicative group of complex n^{th} roots unity.
- (iv) The group $\mathbb{Z}_n = \{[0], [1], \dots, [n-1]\}$ of residue classes modulo n under +, where

$$[i] = \{nk + i \mid k \in \mathbb{Z}\}$$

- (v) Using the association $[k] \leftrightarrow e^{i2\pi k/n}$, for $0 \leq k \leq n-1$, we can realize C_n as \mathbb{Z}_n .
- (vi) Let $G = \langle g \rangle$ be a cyclic group.
 - (a) If $H \leq g$, then H is also cyclic.
 - (b) If $G = C_n$, then it has a unique cyclic subgroup $C_d = \langle g^{n/d} \rangle$ of order d for divisor d of n.

1.3 The symmetric group S_n

- (i) The symmetric group S_n is the group all bijections from a set of size n onto itself.
- (ii) $|S_n| = n!$.
- (iii) A k-cycle $\sigma = (i_1 i_2 \dots i_k)$ in S_n is a permutation of the form

$$\begin{pmatrix} i_1 & i_2 & \dots & i_{n-1} & i_n \\ i_2 & i_3 & \dots & i_n & i_1 \end{pmatrix}$$

- (iv) A 2-cycle in S_n is a called a *transposition*.
- (v) Every permutation $\sigma \in S_n$ can be expressed as a product of disjoint cycles.
- (vi) Suppose that the cycle decomposition of a permutation $\sigma \in S_n$ is given by

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_{k_\sigma},$$

where each σ_i is an m_i -cycle. Then $\sum_{i=1}^{\kappa_{\sigma}} m_i = n$, or in other words, the decomposition induces a partition of the integer n as follows

$$n=m_1+m_2+\ldots+m_{k_{\sigma}}.$$

- (vii) Two permutations of S_n lie in the same conjugacy class if, and only if they induce the same partition of the integer n. Consequently, the cycle decomposition of a permutation is unique.
- (viii) Every k-cycle $(i_1 i_2 \dots i_k)$ (for $k \ge 2$) is a product of k 1 transpositions, namely

$$(i_1 i_2 \dots i_k) = (i_1 i_k)(i_1 i_{k-1}) \dots (i_1 i_2)$$

- (ix) The order of an element in S_n is the least common multiple of the lengths of the cycles in its unique cycle decomposition.
- (x) Every normal subgroup of S_n is a disjoint union of conjugacy classes.
- (xi) A $\sigma \in S_n$ is called an:
 - (a) *even permutation*, if it can be expressed as the product of an even number of transpositions.
 - (b) *odd permutation*, if it can be expressed as the product of an odd number of transpositions.

2 Subgroups

2.1 Basic definitions and examples

- (i) A subset H of a group G is called a *subgroup* if H forms a group under the operation in G.
- (ii) A subgroup H of a group G is said to proper if $H \neq \{1\}$ or G.
- (iii) Let G be a group. Then $H \leq G$ if and only if for every $a, b \in H$, $ab^{-1} \in H$.

- (iv) Examples of subgroups:
 - (a) $n\mathbb{Z} \leq \mathbb{Z}$.
 - (b) $C_n \leq D_{2n} \leq S_n$.
 - (c) The alternating group $A_n = \{ \sigma \in S_n | \sigma \text{ is even.} \}$
 - (d) The group of complex n^{th} roots of unity is a subgroup of \mathbb{C}^{\times} .
 - (e) $SL(n, \mathbb{C}) = \{A \in GL(n, \mathbb{C}) | \det(A) = 1\}$ is a subgroup of $GL(n, \mathbb{C})$.
 - (f) $SL(n, \mathbb{Q}) \leq SL(n, \mathbb{R}) \leq SL(n, \mathbb{C}).$
 - (g) $\operatorname{GL}(n, \mathbb{Q}) \leq \operatorname{GL}(n, \mathbb{R}) \leq \operatorname{GL}(n, \mathbb{C}).$

2.2 Cosets and Lagrange's Theorem

(i) Let G be a group and $H \leq G$. Then the relation \sim_H on G defined by

$$x \sim_H y \iff xy^{-1} \in H$$

is an equivalence relation.

(ii) Let G be a group and $H \leq G$. Then a left coset of H in G is given by

$$gH = \{gh \mid h \in H\},\$$

and a right coset of H in G is given by

$$Hg = \{hg \mid h \in H\}$$

(iii) Let G be a group and $H \leq G$. Then

$$Hg = \{g' \in G \mid g' \sim_H g\}.$$

- (iv) Let G be a group and $H \leq G$. Then for any $g \in G$, there is a bijective correspondence between gH and Hg.
- (v) Let G be a group and $H \leq G$. Then for any $g_1, g_2 \in G$, there is a bijective correspondence between g_1H and g_2H .
- (vi) The sets $G/H = \{gH \mid g \in G\}$ and $H \setminus G = \{Hg \mid g \in G\}$.

- (vii) Let G be a group and $H \leq G$. Then there is a bijective correspondence between G/H and $H \setminus G$.
- (viii) The number of distinct left(or right) cosets of subgroup H of G is called the *index of* H *in* G, which is denoted by G : H]. In other words,

$$[G:H] = |G/H| = |H \backslash G|.$$

- (ix) Lagrange's Theorem: Let G be a finite group and $H \leq G$. Then |H| | |G|.
- (x) The Euler totient function $\phi(n) = |\{k \in \mathbb{Z}^+ | k < n \text{ and } gcd(k, n) = 1\}|.$
- (xi) The multiplicative group $U_n = \{[k] \in \mathbb{Z}_n \mid \gcd(k, n) = 1\}$ of integers modulo n.
- (xii) $|U_n| = \phi(n)$.
- (xiii) Euler's Theorem: If a and n are positive integers such that gcd(a, n) = 1, then

$$a^{\phi(n)} \equiv 1 \pmod{n}.$$

(xiv) Fermat's Theorem: If p is a prime number and a is a positive integer, then

$$a^p \equiv a \pmod{p}$$
.

- (xv) Let G be a group and $H, K \leq G$. Then $HK \leq G$ if, and only if HK = KH.
- (xvi) Let G be a group and $H, K \leq G$. Then $H \cap K \leq G$.
- (xvii) Let G be a group and H, K be finite subgroups of G. Then

$$|HK| = \frac{|H||K|}{|H \cap K|}.$$

2.3 Normal subgroups

- (i) Let G be a group and $H \leq G$. Then H is said to be a normal subgroup of G (denoted by $H \leq G$) if $gNg^{-1} \subset N$, for all $g \in G$.
- (ii) Examples of normal subgroups:
 - (a) $m\mathbb{Z} \leq \mathbb{Z}$, for all $m \in \mathbb{Z}$
 - (b) $A_n \leq S_n$, for $n \geq 3$.
 - (c) $SL(n, \mathbb{C}) \leq GL(n, \mathbb{C})$, for $n \geq 2$.
 - (d) $C_n \leq \mathbb{C}^{\times}$, for $n \geq 2$.
- (iii) The G be a group, and $N \leq G$. Then the following statements are equivalent
 - (a) $N \leq G$.
 - (b) $gNg^{-1} = N$, for all $g \in G$.
 - (c) gN = Ng, for all $g \in G$.
 - (d) (gN)(hN) = ghN, for all $g, h \in G$.
- (iv) Let G be a group and $N \leq G$. Then G/N forms a group under the operation $(gN, hN) \mapsto ghN$.
- (v) Let G be a group, and $H \leq G$ such that |G/H| = 2. Then $H \leq G$.
- (vi) Let G be group, $H \leq G$, and $N \leq G$. Then
 - (a) $NH \leq G$ i.e. NH is the internal direct product of N and H.
 - (b) $N \cap H \trianglelefteq H$.
 - (c) $H \leq NH$.

3 Homomorphisms and isomorphisms

3.1 Homomorphisms

(i) Let G, H be group, and $\varphi : G \to H$ be a map. Then φ is said to be a homomorphism if

$$\varphi(gh) = \varphi(g)\varphi(h),$$

for all $g, h \in G$.

- (ii) Examples of homomorphisms:
 - (a) The trivial homomorphism $\varphi: G \to H$ given by $\varphi(x) = 1$, for all $x \in G$.
 - (b) The *identity homomorphism* $i: G \to G$ given by i(g) = g, for all $g \in G$.
 - (c) The map $\varphi : \mathbb{Z} \to \mathbb{Z}$ defined by $\varphi(x) = nx$.
 - (d) The map $\varphi_n : \mathbb{Z} \to \mathbb{Z}_n$ defined by $\varphi_n(x) = [x]$.
 - (e) The determinant map $\text{Det}: \text{GL}(n, \mathbb{C}) \to \mathbb{C}^{\times}$.
 - (f) The sign map $\tau: S_n \to \{\pm 1\}$ defined by $\tau(\sigma) = (-1)^{n(\sigma)}$, where if σ is expressed as product of transpositions, $n(\sigma)$ is the number of transpositions appearing in the product. In other words,

$$\tau(\sigma) = \begin{cases} 1, & \text{if } \sigma \in A_n \\ -1, & \text{otherwise.} \end{cases}$$

- (iii) Let $\varphi: G \to H$ be a homomorphism.
 - (a) If φ is injective, then it is called a *monomorphism*.
 - (b) If φ is surjective, then it is called an *epimorphism*.
- (iv) Of the examples in (vii) above, (b) and (c) are isomorphisms, while (d) and (f) are epimorphisms.
- (v) Let $\varphi: G \to H$ be a homomorphism. Then
 - (a) $\varphi(1) = 1$. (b) $\varphi(g^{-1}) = \varphi(g)^{-1}$, for all $g \in G$.
- (vi) Let $\varphi: G \to H$ be a homomorphism. Then
 - (a) The set $\operatorname{Ker} \varphi = \{g \in G : \varphi(g) = 1\}$ is called the *kernel of* φ .
 - (b) The set $\operatorname{Im} \varphi = \{\varphi(g) : g \in G\}$ is called the *image of* φ .
- (vii) Let $\varphi: G \to H$ be a homomorphism. Then
 - (a) Ker $\varphi \leq G$.
 - (b) $\operatorname{Im} \varphi \leq H$.
 - (c) φ is a monomorphism if and only if Ker $\varphi = \{1\}$.

3.2 The Isomorphism Theorems

- (i) A homomorphism $\varphi: G \to H$ is called an *isomorphism* if φ is bijective.
- (ii) Let G be a group, and $N \leq G$. Then the quotient map $q: G \to G/N$ given by q(g) = gN is a homomorphism.
- (iii) First Isomorphism Theorem: Let G, H be groups, and $\varphi : G \to H$ is a homomorphism. Then

$$G/\operatorname{Ker}\varphi \cong \operatorname{Im}\varphi.$$

In particular, if φ is onto, then

$$G/\operatorname{Ker}\varphi \cong H.$$

- (iv) Let G be a group, $H \leq G$, and $N \leq G$. Then
 - (a) $H \cap N \trianglelefteq H$.
 - (b) $H \leq NH$.
- (v) Second Isomorphism Theorem: Let G be a group, $H \leq G$, and $N \leq G$. Then

$$H/H \cap N \cong NH/N.$$

(vi) Third Isomorphism Theorem: Let G be group, and $H, K \trianglelefteq G$ such that $H \le K$. Then

$$(G/H)/(K/H) \cong G/K.$$

4 Group actions

(i) Let G be a group and A be nonempty say. Then an action of G on A, written as $G \curvearrowright A$ is a map

$$G \times A \to A : (g, a) \mapsto g \cdot a$$

satisfying the following conditions

- (a) $1 \cdot a = a$, for all $a \in a$, and
- (b) $g \cdot (h \cdot a) = (gh) \cdot a$, for all $g, h \in G$ and $a \in A$.

- (ii) For a group G, the set $S(G) = \{f : G \to G \mid f \text{ is a bijection}\}$ forms a group under composition.
- (iii) Every action $G \curvearrowright A$ induces a homomorphism

$$\psi_{G \cap A} : G \to S(A),$$

defined by

$$\psi(g) = \varphi_g$$
, where $\varphi_g(a) = g \cdot a$, for all $a \in A$,

which is called the *permutation representation* induced (or afforded) by the action.

(iv) Conversely, given a homomorphism $\psi: G \to S(A)$, the map

$$G \times A \to A : (g, a) \mapsto \psi(g)(a)$$

defines an action of G on A.

- (v) A group action $G \curvearrowright A$ is said to be *faithful* if the permutation representation $\psi_{G \curvearrowright A}$ it affords, is a monomorphism.
- (vi) Examples of group actions:
 - (a) There is a natural faithful action (denoted by $G \curvearrowright G$) of a group G on itself by left multiplication given by

$$(g,h) \mapsto gh$$
, for all $g,h \in G$.

The permutation representation $\psi_{G \cap G} : G \to S(G)$ afforded by this action given by

$$\psi_{G \cap G}(g) = \varphi_g$$
, where $\varphi_g(h) = gh$, for all $h \in G$,

is called the *left regular representation*.

(b) A group G also acts on itself by conjugation (denoted by $G \curvearrowright^c G$), which is defined in the following manner

$$(g,h) \mapsto ghg^{-1}$$
, for all $g,h \in G$,

and this yields the permutation representation

$$\psi_{G \curvearrowright^c G}(g) = \varphi_q^c$$
, where $\varphi_q^c(h) = ghg^{-1}$, for all $h \in G$.

(c) Let P_n be the regular *n*-gon. Then $D_{2n} \curvearrowright P_n$ by permuting its vertices $\{P_1, P_2, \ldots, P_n\}$ as follows

$$\sigma \cdot (P_1, P_2, \ldots, P_n) = (P_{\sigma(1)}, P_{\sigma(2)}, \ldots, P_{\sigma(n)}),$$

and this permutation extends to a faithful action on the entire polygon P_n .

- (vii) Consider an action $G \curvearrowright A$. Then
 - (a) for each $a \in A$, the set $G_a = \{g \in G | g \cdot a = a\}$ is called the *stabilizer* of a under the action.
 - (b) or each $a \in A$, the set $\mathcal{O}_a = \{g \cdot a \mid g \in G\}$ is called the *orbit* of a under the action.
 - (c) Ker $\psi_{G \curvearrowright A}$ is called *kernel of the action*, and is also denoted by Ker($G \curvearrowright A$).
- (viii) Consider an action $G \curvearrowright A$. Then
 - (a) $\operatorname{Ker}(G \curvearrowright A) \trianglelefteq G$, and
 - (b) for each $a \in A$, $G_a \leq G$.
- (ix) Consider an action $G \curvearrowright A$.
 - (a) Then the relation \sim on A defined by

 $a \sim b \iff$ there exists some $g \in G$ such that $g \cdot a = b$

defines an equivalence relation on A.

(b) Moreover, the equivalence classes under \sim are precisely the distinct orbits \mathcal{O}_a under the action. Consequently, for any two orbits \mathcal{O}_a and \mathcal{O}_b , we have that either

$$\mathcal{O}_a = \mathcal{O}_b \text{ or } \mathcal{O}_a \cap \mathcal{O}_b = \emptyset.$$

(x) An action $G \curvearrowright A$ is said to be *transitive* if there exists some $a \in A$ for which $\mathcal{O}_a = A$. This is equivalent to requiring that for an action to be transitive, $\mathcal{O}_a = A$, for all $a \in A$.

(xi) Orbit-Stabilizer Theorem: Consider an action $G \curvearrowright A$, where $|A| < \infty$. Then for each $a \in A$, we have that

$$[G:G_a] = |\mathcal{O}_a|.$$

(xii) Consider an action $G \curvearrowright A$, where $|G|, |A| < \infty$. Then

$$|\mathcal{O}_a| \mid |G|$$
, for each $a \in A$.

(xiii) Burnside Lemma: Consider an action $G \curvearrowright A$, where $|G|, |A| < \infty$. Then the number of distinct orbits under the action (denoted by $|\mathcal{O}(G \curvearrowright A)|$) is given by

$$|\mathcal{O}(G \frown A)| = \frac{1}{|G|} \sum_{g \in G} |A_g|,$$

where $A_g = \operatorname{Fix}_g(A) = \{a \in A \mid g \cdot a = a\}.$

(xiv) Cauchy Theorem: Let G be a finite group, and let p be a prime number such that $p \mid |G|$. Then G has an element of order p, and consequently, a cyclic subgroup of order p.

4.1 The action $G \curvearrowright G$

- (i) For a group G, consider the self-action $G \curvearrowright G$ by left-multiplication.
 - (a) $G \curvearrowright G$ is a transitive action,
 - (b) $\operatorname{Ker}(G \curvearrowright G) = 1$, and consequently
 - (c) $G \xrightarrow{\psi_{G \cap G}} S(G).$
- (ii) Cayley's Thorem: Every group G is isomorphic to a subgroup of S(G). In particular, if |G| = n, then G isomorphic to a subgroup of S_n .
- (iii) Given a group G and $H \leq G$, the self-action $G \curvearrowright G$ extends to an action $G \curvearrowright G/H$, which is defined by $(g, g'H) \mapsto (gg')H$, and this action has the following properties:
 - (a) It is a transitive action.

(b) Its kernel is the smallest normal subgroup of G containing H, which is given by

$$\operatorname{Ker}(G \curvearrowright G/H) = \bigcap_{g \in G} gHg^{-1}.$$

- (c) $G_H = H$ and $\mathcal{O}_H = G/H$.
- (d) Hence, when $|G/H| < \infty$ and $|G| < \infty$, the Orbit-Stabilizer Theorem yields

$$[G/H] = |G|/|H|,$$

which is the Lagrange's Theorem.

4.2 The action $G \curvearrowright^c G$

(i) For a group G, the set

$$Z(G) = \{ g \in G \mid gh = hg, \text{ for all } h \in G \}$$

is called the *center of* G.

- (ii) Let G be a group and $S \subseteq G$.
 - (a) The set

$$C_G(S) = \{g \in G \mid gs = sg, \text{ for all } s \in S\}$$

is called the *centralizer of* S *in* G.

(b) The set

$$N_G(S) = \{ g \in G \, | \, gSg^{-1} = S \}$$

is called the the normalizer of H in G.

- (iii) Let G be a group and $S \subseteq G$. Then $C_G(S) \leq G$ and $N_G(S) \leq G$. Furthermore, when $S = \{h\}$, we have that $C_G(h) = N_G(h)$.
- (iv) For a group G, consider the self-action $G \curvearrowright^c G$ by conjugation.
 - (a) Since $\mathcal{O}_1 = \{1\}, G \curvearrowright^c G$ is a non-transitive action.
 - (b) $\operatorname{Ker}(G \curvearrowright^{c} G) = Z(G)$, and hence $Z(G) \trianglelefteq G$.
 - (c) For each $h \in G$, $G_h = C_G(h)$.

- (d) For each $h \in G$, the orbit $\mathcal{O}_h = \{ghg^{-1} | g \in G\}$ is called the *conjugacy class of* h *in* G (also denoted by \mathcal{C}_h).
- (v) Let P(G) denote the power set of G. The action $G \curvearrowright^c G$ extends to an action $G \curvearrowright^c P(G)$ defined by $(g, S) \mapsto gSg^{-1}$. This action has the following properties.
 - (a) For each $S \in P(G)$, we have

$$G_S = \{g \in G \mid gSg^{-1} = S\} = N_G(S).$$

(b) For each $S \in P(G)$, we have

$$\mathcal{O}_S = \{gSg^{-1} \mid g \in G\} = \mathcal{C}_S,$$

the conjugacy class of the set S.

(c) When $|G| < \infty$, we have that $|P(G)| < \infty$, and hence the Orbit-Stabilizer Theorem, yields

$$|\mathcal{C}_S| = [G : N_G(S)].$$

(vi) Class Equation: Let G be a finite group, and let g_1, g_2, \ldots, g_r be representatives of the distinct classes of G not contained in Z(G). Then

$$|G| = |Z(G)| + \sum_{i=1}^{r} [G : C_G(g_i)]$$

(vii) Let G be a finite group, and p is the smallest prime such that $p \mid |G|$. Then every index p subgroup of G is normal is G.

4.3 Sylow's Theorems and simple groups

- (i) Let p be a prime number. A group G is said to be a p-group if each element in G has order a power of the p.
- (ii) A subgroup H of a group G is a called a *p*-subgroup if H itself is a *p*-group.
- (iii) Example: For a prime p, the group \mathbb{Z}_{p^k} is a p-group for every $k \in \mathbb{N}$.

- (iv) A finite group is a p-group if, and only if $|G| = p^k$, for some $k \in \mathbb{N}$.
- (v) Consider an action $G \curvearrowright A$, where $|G| = p^n$ and $|A| < \infty$. Then

$$|A| \equiv |A_G| \pmod{p}$$

(vi) Let H be a p-subgroup of a finite group G. Then

$$[N_G(H):H] \equiv [G:H] \pmod{p}$$

- (vii) First Sylow Theorem: Let G be a finite group with $|G| = p^n m$, where p is a prime number, and m is a positive integer such that $p \nmid m$. Then
 - (a) for $1 \leq i \leq n$, G contains a subgroup of order p^i , and
 - (b) for $1 \le i < n$, every subgroup of G of order p^i is a normal subgroup of a subgroup of G of order p^{i+1} .
- (viii) If $|G| = p^n m$, where p is a prime number, and m is a positive integer such that $p \nmid m$, then a subgroup of order p^n is called a *Sylow p-subgroup* of G.
- (ix) If |G| = pq, where p and q are primes, then G has a Sylow p-subgroup H of order p and a Sylow q-subgroup K of order q, and so G = HK.
- (x) Second Sylow Theorem: Any two Sylow p-subgroups of a group G are conjugate in G.
- (xi) If P is a unique Sylow p-subgroup of a group G, then $P \trianglelefteq G$.
- (xii) Let P be a Sylow p-subgroup, and Q, a p-subgroup of a group G. Then

$$N_G(P) \cap Q = P \cap Q$$

(xiii) Third Sylow Theorem: Let n_p denote the number of Sylow *p*-subgroups of a group *G*. Then for each Sylow *p*-subgroup *P* of *G*, we have

$$[G:N_G(P)] = n_p$$

Moreover,

$$n_p \equiv 1 \pmod{p}$$

- (xiv) A group G is said to be *simple* if it has no proper normal subgroups.
- (xv) Examples of simple/non-simple groups:
 - (a) If |G| = p, where p is a prime, then G has no proper subgroups, and so G has to be simple.
 - (b) Let $|G| = p^k$, where p is a prime and k > 1. Then by the First Sylow Theorem, G has a subgroup H of H of p^{k-1} . Since [G : H] = p, we have that $H \leq G$, and so G is non-simple.
 - (c) If |G| = pq, where p < q are distinct primes, then G is not simple, as it has a subgroup of order q that has index p in G.
- (xvi) Let G be any group that has non-prime order less than 60. Then G is non-simple.
- (xvii) The group A_5 that has order 60 is smallest simple group of non-prime order.

5 Semi-direct products and group extensions

5.1 Direct products

(i) Given two groups G and H, consider the cartesian product $G \times H$ with a binary operation given by

 $(g_1, h_2)(g_2, h_2) = (g_1g_2, h_1h_2)$, for all $g_1, g_2 \in G$ and $h_1, h_2 \in H$.

Under this operation, the set $G \times H$ forms a group called the *external* direct product (or the direct product) of the groups G and H, and is denoted simply as $G \times H$.

- (ii) The identity element in $G \times H$ is (1, 1) and the inverse of an element $(g, h) \in G \times H$ is given by (g^{-1}, h^{-1}) .
- (iii) The notion of a direct of two groups can be extended to define the direct product of n groups G_i , $1 \le i \le n$, denoted by

$$\prod_{i=1}^{n} G_i = G_1 \times G_2 \times \ldots \times G_n$$

(iv) The groups G and H inject into the $G \times H$, via the natural monomorphisms

$$\begin{split} G &\hookrightarrow G \times H \ : \ g \mapsto (g,1) \\ H &\hookrightarrow G \times H \ : \ h \mapsto (1,h) \end{split}$$

(v) For any two groups G and H, the natural homomorphism

 $G \times H \to H \times G : (g,h) \mapsto (h,g)$

is an isomorphism, and hence we have that

$$G \times H \cong H \times G.$$

In other words, up to isomorphism, the direct product of two groups is commutative.

(vi) For any three groups G, H, and K, the natural homomorphism

 $(G \times H) \times K \to (G \times H) \times K : ((g, h), k) \mapsto (g, (h, k))$

is an isomorphism, and hence we have that

$$G \times (H \times K) \cong (G \times H) \times K.$$

In other words, up to isomorphism, the direct product of three groups is associative.

- (vii) A direct product $\prod_{i=1}^{n} G_i$ of groups is abelian, if and only if, each component group G_i is abelian.
- (viii) Let $m, n \ge 2$ be positive integers. Then

$$\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$$

if and only is gcd(m, n) = 1.

(ix) Classification of finitely generated abelian groups: Every finitely generated abelian group is isomorphic to a group of the form

$$\mathbb{Z}^r \times \mathbb{Z}_{p_1^{r_1}} \times \mathbb{Z}_{p_2^{r_2}} \times \ldots \times \mathbb{Z}_{p_k^{r_k}},\tag{*}$$

where n and the $r_i \ge 1$ are positive integers, and the p_i are prime numbers.

- (x) Let G be a finitely generated abelian group which has a direct product decomposition of the form (*) above.
 - (a) The component \mathbb{Z}^r is the called *free part*, and the component $\mathbb{Z}_{p_1^{r_1}} \times \ldots \times \mathbb{Z}_{p_k^{r_k}}$ is called the *torsion* part of the direct product decomposition of G.
 - (b) The integer r is called *rank* of G.

5.2 Semi-direct products

(i) For a group G, the set

$$\operatorname{Aut}(G) = \{\varphi : G \to G \,|\, \varphi \text{ is a isomorphism}\}$$

forms a group under composition (with identity element id_G) called the *automorphism group of G*.

- (ii) For a group G, $\operatorname{Aut}(G) \leq S(G)$.
- (iii) The set $\{[k] \in \mathbb{Z}_n \mid \gcd(k, n) = 1\}$ under multiplication modulo n is called the *multiplicative group of units modulo n*, and is denoted by U_n .
- (iv) The group U_n is cyclic if and only if

$$n = 1, 2, 4, p^k$$
, or $2p^k$,

where p is an odd prime.

- (v) Examples of automorphism groups:
 - (a) When $G = \mathbb{Z}$, Aut $(G) \cong \mathbb{Z}_2$, as it comprises only 1 (i.e. id_G) and -1 (i.e. $-id_G$).
 - (b) For $G = \mathbb{Z}_n$, $\operatorname{Aut}(G) \cong U_n$, as any such isomorphism has to map 1 to a generator of G.
- (vi) Let G, H be groups, and $\psi : G \to \operatorname{Aut}(H)$ be a homomorphism. Consider the binary operation \cdot on the set $G \times H$ defined by

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1\psi(g_1)(h_2))$$

Then $(G \times H, \cdot)$ forms a group called the *semi-direct product* of the groups G and H under ψ , and is denoted by $G \ltimes_{\psi} H$.

- (vii) The identity element in $G \ltimes_{\psi} H$ is (1, 1) and the inverse of an element $(g, h) \in G \times H$ is given by (g^{-1}, h^{-1}) .
- (viii) If ψ is taken to be the trivial homomorphism (that maps all elements of G to the identity isomorphism $1 \in Aut(H)$), then

$$G \ltimes_{\psi} H = G \times H.$$

Hence, the semi-direct product of groups is a generalization of the direct product.

- (ix) For a semi-direct product $G \ltimes_{\psi} H$, the homomorphism $\psi : G \to \operatorname{Aut}(H) \leq S(G)$ is indeed the permutation representation of an action $G \curvearrowright H$.
- (x) A semi-direct product $G \ltimes_{\psi} H$ is abelian if and only if both G and H are abelian, and ψ is trivial.
- (xi) Examples of semi-direct products:
 - (a) When $G = \mathbb{Z}_m$ and $H = \mathbb{Z}_n$, a non-trivial homomorphism $\psi: G \to \operatorname{Aut}(H) \cong U_n$ exists if and only if

$$gcd(m, \phi(n)) > 1.$$

• Moreover, ψ is completely determined by $\psi(1)$, and so if $\psi(1) = k \in U_n$, then k has to satisfy

$$k^m \equiv 1 \pmod{n}.$$

- Hence, $\mathbb{Z}_m \ltimes_{\psi} \mathbb{Z}_n$ is often abbreviated as $\mathbb{Z}_n \ltimes_k \mathbb{Z}_n$.
- (b) In particular, consider the case when m = 2 in example (a) above with the homomorphism ψ determined by $\psi(1) = -1 \in \operatorname{Aut}(H)$. (Note that -1 here denotes the isomorphism $h \stackrel{-1}{\longmapsto} h^{-1} = -h$, for each $h \in H$.)

Representing the dihedral group as before, that is,

$$D_{2n} = \langle r, s \rangle = \{1, r, r^2, \dots, r^{n-1}, s, sr, sr^2, \dots, sr^{n-1}\},\$$

we have that

Ì

$$\mathbb{Z}_2 \ltimes_{-1} \mathbb{Z}_n \cong D_{2n}$$

via the isomorphism

$$(i,j) \mapsto s^i r^j.$$

5.3 Group Extensions

(i) A sequence of groups G_i and homomorphisms φ_i of the form

$$G_0 \xrightarrow{\varphi_1} G_1 \xrightarrow{\varphi_2} \dots \xrightarrow{\varphi_{n-1}} G_n$$

is called an *exact sequence* if $\operatorname{Ker} \varphi_{i+1} = \operatorname{Im} \varphi_i$, for $1 \leq i \leq n-2$.

(ii) A short exact sequence is an exact sequence of the form

$$1 \xrightarrow{\varphi_0} G_1 \xrightarrow{\varphi_1} G_2 \xrightarrow{\varphi_2} G_3 \xrightarrow{\varphi_4} 1,$$

where 1 denotes the trivial group, and φ_0, φ_4 are trivial homomorphisms.

(iii) The exactness of the sequence

$$1 \xrightarrow{\varphi_0} G_1 \xrightarrow{\varphi_1} G_2 \xrightarrow{\varphi_2} G_3 \xrightarrow{\varphi_4} 1,$$

implies that φ_1 is injective and and φ_2 is surjective.

(iv) If G, N and Q are group, then G is called an *extension of* N by Q if there exists a short exact sequence of the form

$$1 \to N \to G \to Q \to 1.$$

- (v) Examples of group extensions:
 - (a) For any group G, and $N \trianglelefteq G$, there is a natural short exact sequence given by

$$1 \to N \hookrightarrow G \xrightarrow{g \mapsto gN} G/N \to 1$$

is a short exact sequence. Hence, G is an extension of N by G/N.

(b) For any two groups G and H, and a semi-direct product $G\ltimes_{\psi} H,$

$$1 \to G \xrightarrow{g \mapsto (g,0)} H \ltimes_{\psi} G \xrightarrow{(g,h) \mapsto h} H \to 1$$

is a short exact sequence. Hence, $G \ltimes_{\psi} H$ is an extension of G by H.

(c) A group G than is an extension of \mathbb{Z}_m by \mathbb{Z}_n is called a *metacyclic* group.

- (d) The group D_{2n} is a metacyclic group, which is an extension of \mathbb{Z}_2 by \mathbb{Z}_n .
- (e) Consider the set $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ having 8 elements with an operation \cdot satisfying the following relations

$$i \cdot i = j \cdot j = k \cdot k = -1$$
$$i \cdot j = k, \ j \cdot k = i, \ k \cdot i = j$$
$$(-1) \cdot (-1) = +1$$

Then (Q_8, \cdot) is a group with +1 as its identity element called the group of *quaternions*. The group Q_8 is a metacyclic group that is an extension of \mathbb{Z}_4 by \mathbb{Z}_2 .

6 Classification of groups up to order 15

Below is a table describing the abelian and non-abelian groups (up to isomorphism) of orders ≤ 15 .

Order	Abelian groups	Non-abelian groups
1	\mathbb{Z}_1	None
2	\mathbb{Z}_2	None
3	\mathbb{Z}_3	None
4	$\mathbb{Z}_4, \mathbb{Z}_2 imes \mathbb{Z}_2$	None
5	\mathbb{Z}_5	None
6	\mathbb{Z}_6	S_3
7	\mathbb{Z}_7	None
8	$\mathbb{Z}_8, \mathbb{Z}_4 \times \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$	D_8, Q_8
9	$\mathbb{Z}_9, \mathbb{Z}_3 imes \mathbb{Z}_3$	None
10	\mathbb{Z}_{10}	D_{10}
11	\mathbb{Z}_{11}	None
12	$\mathbb{Z}_{12}, \mathbb{Z}_6 \times \mathbb{Z}_2$	$A_4, D_{12}, \mathbb{Z}_4 \ltimes \mathbb{Z}_3$
13	\mathbb{Z}_{13}	None
14	\mathbb{Z}_{14}	D_{14}
15	\mathbb{Z}_{15}	None

7 Solvable groups

7.1 Normal and composition series

(i) In a group G, a series of subgroups N_i , for $1 \le i \le k$ satisfying

 $1 = N_0 \trianglelefteq N_2 \trianglelefteq \ldots \trianglelefteq N_{k-1} \trianglelefteq N_k = G$

are said to form a normal series.

(ii) If in a normal series

$$1 = N_0 \trianglelefteq N_2 \trianglelefteq \ldots \oiint N_{k-1} \trianglelefteq N_k = G,$$

the quotient groups N_{i+1}/N_i are simple for $1 \le i \le k-1$, then the normal series is called a *composition series*. The quotient groups N_{i+1}/N_i are called *composition factors*.

- (iii) Examples of composition series.
 - (a) The following are composition series' associated with the group $D_8 = \langle s, r \rangle$

$$1 \leq \langle s \rangle \leq \langle s, r^2 \rangle \leq D_8$$
$$1 \leq \langle r^2 \rangle \leq \langle r \rangle \leq D_8$$

(b) The group S_3 has a composition series

$$1 \trianglelefteq A_3 \trianglelefteq S_3$$

(c) Since A_5 is a simple group, the group S_5 has a composition series

$$1 \leq A_5 \leq S_5$$

(d) Every group G of order p^k , for p prime and k > 1 admits a composition series of the form

$$1 = H_0 \trianglelefteq H_1 \trianglelefteq H_2 \trianglelefteq \ldots \trianglelefteq H_{k-1} \trianglelefteq H_k = G,$$

where H_i is a group of order p^i whose existence and normality in H_{i+1} are guaranteed by the Sylow's Theorems.

- (iv) Jordan-Holder Theorem: Let G be a finite non-trivial group. Then
 - (a) G has a composition series, and furthermore
 - (b) the composition factors in the composition series are unique up to permutation of its composition factors. More precisely, if

$$1 = N_0 \leq N_1 \leq \ldots \leq N_{r-1} \leq N_r = G$$

and
$$1 = M_0 \leq M_1 \leq \ldots \leq M_{s-1} \leq M_s = G$$

are two composition series for G, then r = s, and there exists a permutation π of $\{1, 2, \ldots, r\}$ such that

$$M_{\pi(i)+1}/M_{\pi(i)} \cong N_{i+1}/N_i$$
, for $1 \le i \le r-1$.

7.2 Derived series and solvable groups

(i) The subgroup $[G, G] = \langle S \rangle$ of a group G generated by elements in the set

$$S = \{ghg^{-1}h^{-1} \, | \, g, h \in G\}$$

is called the *commutator subgroup or the derived subgroup of* G. It is also denoted by G' or $G^{(1)}$.

- (ii) Let G be a group. Then
 - (a) $G^{(1)} \leq G$.
 - (b) $G/G^{(1)}$ is an abelian group called the abelianization of G.
 - (c) G is abelain if, and only if $G^{(1)} = 1$.
- (iii) For $i \ge 1$, the *i*th commutator subgroup $G^{(i)}$ of a group G is defined by

$$G^{(i)} = [G^{(i-1)}, G^{(i-1)}]$$
 with $G^{(0)} = G$.

- (iv) Let G be a group. Then for any $i \ge 0$,
 - (a) $G^{(i+1)} \leq G^{(i)}$, and hence G has a chain of normal subgroups

$$\dots G^{(i+1)} \trianglelefteq G^{(i)} \trianglelefteq \dots \trianglelefteq G^{(1)} \trianglelefteq G^{(0)} = G,$$

and furthermore,

(b) $G^{(i)}/G^{(i+1)}$.

(v) A group G is said to be *solvable* if it has a normal series

 $1 = N_0 \trianglelefteq N_2 \trianglelefteq \ldots \trianglelefteq N_{k-1} \trianglelefteq N_k = G$

such that N_{i+1}/N_i is abelian, for $1 \le i \le k-1$.

- (vi) Examples of solvable/non-solvable groups.
 - (a) The group S_3 is solvable, as it has a normal series

$$1 \leq A_3 \leq S_3$$
,

where $A_3 \cong \mathbb{Z}_3$ and $S_3/A_3 \cong \mathbb{Z}_2$.

(b) The Jordan-Holder Theorem asserts that S_5 has a composition series given by

 $1 \leq A_5 \leq S_5$

that is unique up to permutation of its composition factors, and these factors are isomorphic to A_5 and \mathbb{Z}_2 . Since A_5 is a nonabelian simple group and $[S_5: A_5] = 2$, S_5 is not solvable.

- (c) Abelian groups are solvable, as all of their subgroups are normal and all quotient groups formed using these subgroups will also be abelian.
- (d) A group G of order p^k , for p prime and k > 1 admits a normal series of the form

$$1 = H_0 \trianglelefteq H_1 \trianglelefteq H_2 \trianglelefteq \ldots \trianglelefteq H_{k-1} \trianglelefteq H_k = G,$$

where H_i is a group of order p^i whose existence and normality in H_{i+1} are guaranteed by the Sylow's Theorems. Since $H_{i+1}/H_i \cong \mathbb{Z}_p$, G is solvable.

- (vii) Every subgroup of a solvable group is solvable.
- (viii) A group G is solvable if, and only if there exists $N \leq G$ such that both N and G/N are solvable.
- (ix) Let G be a finite group.

- (a) (Philip Hall) G is solvable if, and only if for every divisor d of n such that gcd(d, n/d) = 1, G has a subgroup of order d.
- (b) (Burnside) If $|G| = p^a q^b$, where p and q are primes, then G is solvable.
- (c) (Feit-Thompson Theorem) If G is of odd order, then it is solvable.
- (d) (Feit-Thompson) If G is simple, then $G \cong \mathbb{Z}_p$, for some prime number p.
- (e) (Thompson) If for for every pair of elements $x, y \in G$, $\langle x, y \rangle$ is a solvable group, then G is solvable.
- (x) A group G is solvable if, and only if there exists and integer $k \ge 0$ such that $G^{(k)} = 1$.
- (xi) For a solvable group G, smallest integer $k \ge 0$ such that $G^{(k)} = 1$ is called the *derived length or the solvable length* of G.
- (xii) Properties of the derived length.
 - (a) A group G has derived length 0 if, and only if G is trivial.
 - (b) A group G has derived length 1 if, and only if G is abelian.
 - (c) A group has derived length at most two if and only it has an abelian normal subgroup such that the quotient group is also an abelian group.